Algorithms With Julia

Download Algorithms With Julia PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algorithms With Julia book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Algorithms with JULIA

Author: Clemens Heitzinger
language: en
Publisher: Springer Nature
Release Date: 2022-12-12
This book provides an introduction to modern topics in scientific computing and machine learning, using JULIA to illustrate the efficient implementation of algorithms. In addition to covering fundamental topics, such as optimization and solving systems of equations, it adds to the usual canon of computational science by including more advanced topics of practical importance. In particular, there is a focus on partial differential equations and systems thereof, which form the basis of many engineering applications. Several chapters also include material on machine learning (artificial neural networks and Bayesian estimation). JULIA is a relatively new programming language which has been developed with scientific and technical computing in mind. Its syntax is similar to other languages in this area, but it has been designed to embrace modern programming concepts. It is open source, and it comes with a compiler and an easy-to-use package system. Aimed at students of applied mathematics, computer science, engineering and bioinformatics, the book assumes only a basic knowledge of linear algebra and programming.
The Little Book of Julia Algorithms

Targeted at middle and high school programmers, this book aims to explain basic computer science concepts while teaching the Julia programming language. As a fast and productive high level language, Julia is ideal for beginner programmers. The learning curve for programming can be quite steep and this book aims to ease this transition by encouraging practise and gradually introducing more complex concepts. The book contains 50 programming challenges that encourages the reader to write their own programs. The solutions to all challenges are given at the end of the book. This book will make readers comfortable with using computers to solve any problems, and leave them well prepared for more significant programming in their maths, science or computer science courses at college. After finishing the exercises in this book, the reader should feel more familiar with: -Loops and conditionals -Structuring code with functions -Reading and writing files -Installing and using packages -Sorting and searching -Simple Statistics and Plotting. Originally written in Python as "The Little Book of Algorithms 2.0" by William Lau, this version updates the text to use Julia. With a foreword by Jeff Bezanson, co-creator of the Julia programming language.
Algorithms for Optimization

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.