Algebraic Quotients Torus Actions And Cohomology The Adjoint Representation And The Adjoint Action

Download Algebraic Quotients Torus Actions And Cohomology The Adjoint Representation And The Adjoint Action PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algebraic Quotients Torus Actions And Cohomology The Adjoint Representation And The Adjoint Action book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action

Author: A. Bialynicki-Birula
language: en
Publisher: Springer Science & Business Media
Release Date: 2002-04-24
This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups". The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.
Algebraic Quotients. Torus Actions and Cohomology. the Adjoint Representation and the Adjoint Action

This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups." The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.
Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action

Author: A. Bialynicki-Birula
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups". The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.