Algebraic Number Theory And Fermat S Last Theorem


Download Algebraic Number Theory And Fermat S Last Theorem PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algebraic Number Theory And Fermat S Last Theorem book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Algebraic Number Theory and Fermat's Last Theorem


Algebraic Number Theory and Fermat's Last Theorem

Author: Ian Stewart

language: en

Publisher: CRC Press

Release Date: 2025-02-07


DOWNLOAD





Updated to reflect current research and extended to cover more advanced topics as well as the basics, Algebraic Number Theory and Fermat’s Last Theorem, Fifth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics—the quest for a proof of Fermat’s Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers, initially from a relatively concrete point of view. Students will see how Wiles’s proof of Fermat’s Last Theorem opened many new areas for future work. New to the Fifth Edition Pell's Equation x^2-dy^2=1: all solutions can be obtained from a single `fundamental' solution, which can be found using continued fractions. Galois theory of number field extensions, relating the field structure to that of the group of automorphisms. More material on cyclotomic fields, and some results on cubic fields. Advanced properties of prime ideals, including the valuation of a fractional ideal relative to a prime ideal, localisation at a prime ideal, and discrete valuation rings. Ramification theory, which discusses how a prime ideal factorises when the number field is extended to a larger one. A short proof of the Quadratic Reciprocity Law based on properties of cyclotomic fields. This Valuations and p-adic numbers. Topology of the p-adic integers. Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.

Algebraic Number Theory and Fermat's Last Theorem


Algebraic Number Theory and Fermat's Last Theorem

Author: Ian Stewart

language: en

Publisher: CRC Press

Release Date: 2001-12-12


DOWNLOAD





First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it

Algebraic Number Theory


Algebraic Number Theory

Author: Ian Stewart

language: en

Publisher: Springer

Release Date: 1979-05-31


DOWNLOAD





The title of this book may be read in two ways. One is 'algebraic number-theory', that is, the theory of numbers viewed algebraically; the other, 'algebraic-number theory', the study of algebraic numbers. Both readings are compatible with our aims, and both are perhaps misleading. Misleading, because a proper coverage of either topic would require more space than is available, and demand more of the reader than we wish to; compatible, because our aim is to illustrate how some of the basic notions of the theory of algebraic numbers may be applied to problems in number theory. Algebra is an easy subject to compartmentalize, with topics such as 'groups', 'rings' or 'modules' being taught in comparative isolation. Many students view it this way. While it would be easy to exaggerate this tendency, it is not an especially desirable one. The leading mathematicians of the nineteenth and early twentieth centuries developed and used most of the basic results and techniques of linear algebra for perhaps a hundred years, without ever defining an abstract vector space: nor is there anything to suggest that they suf fered thereby. This historical fact may indicate that abstrac tion is not always as necessary as one commonly imagines; on the other hand the axiomatization of mathematics has led to enormous organizational and conceptual gains.