Algebraic Geometry For Robotics And Control Theory


Download Algebraic Geometry For Robotics And Control Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algebraic Geometry For Robotics And Control Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Algebraic Geometry For Robotics And Control Theory


Algebraic Geometry For Robotics And Control Theory

Author: Laura Menini

language: en

Publisher: World Scientific

Release Date: 2021-09-02


DOWNLOAD





The development of inexpensive and fast computers, coupled with the discovery of efficient algorithms for dealing with polynomial equations, has enabled exciting new applications of algebraic geometry and commutative algebra. Algebraic Geometry for Robotics and Control Theory shows how tools borrowed from these two fields can be efficiently employed to solve relevant problem arising in robotics and control theory.After a brief introduction to various algebraic objects and techniques, the book first covers a wide variety of topics concerning control theory, robotics, and their applications. Specifically this book shows how these computational and theoretical methods can be coupled with classical control techniques to: solve the inverse kinematics of robotic arms; design observers for nonlinear systems; solve systems of polynomial equalities and inequalities; plan the motion of mobile robots; analyze Boolean networks; solve (possibly, multi-objective) optimization problems; characterize the robustness of linear; time-invariant plants; and certify positivity of polynomials.

Algebraic Geometry for Robotics and Control Theory


Algebraic Geometry for Robotics and Control Theory

Author: Laura Menini

language: en

Publisher:

Release Date: 2021


DOWNLOAD





"The development of inexpensive and fast computers, coupled with the discovery of efficient algorithms for dealing with polynomial equations, has enabled exciting new applications of algebraic geometry and commutative algebra. Algebraic Geometry for Robotics and Control Theory shows how tools borrowed from these two fields can be efficiently employed to solve relevant problem arising in robotics and control theory. After a brief introduction to various algebraic objects and techniques, the book first covers a wide variety of topics concerning control theory, robotics, and their applications. Specifically this book shows how these computational and theoretical methods can be coupled with classical control techniques to: solve the inverse kinematics of robotic arms; design observers for nonlinear systems; solve systems of polynomial equalities and inequalities; plan the motion of mobile robots; analyze Boolean networks; solve (possibly, multi-objective) optimization problems; characterize the robustness of linear; time-invariant plants; and certify positivity of polynomials"--

Geometric Algebra Applications Vol. II


Geometric Algebra Applications Vol. II

Author: Eduardo Bayro-Corrochano

language: en

Publisher: Springer Nature

Release Date: 2020-06-19


DOWNLOAD





This book presents a unified mathematical treatment of diverse problems in the general domain of robotics and associated fields using Clifford or geometric alge- bra. By addressing a wide spectrum of problems in a common language, it offers both fresh insights and new solutions that are useful to scientists and engineers working in areas related with robotics. It introduces non-specialists to Clifford and geometric algebra, and provides ex- amples to help readers learn how to compute using geometric entities and geomet- ric formulations. It also includes an in-depth study of applications of Lie group theory, Lie algebra, spinors and versors and the algebra of incidence using the universal geometric algebra generated by reciprocal null cones. Featuring a detailed study of kinematics, differential kinematics and dynamics using geometric algebra, the book also develops Euler Lagrange and Hamiltoni- ans equations for dynamics using conformal geometric algebra, and the recursive Newton-Euler using screw theory in the motor algebra framework. Further, it comprehensively explores robot modeling and nonlinear controllers, and discusses several applications in computer vision, graphics, neurocomputing, quantum com- puting, robotics and control engineering using the geometric algebra framework. The book also includes over 200 exercises and tips for the development of future computer software packages for extensive calculations in geometric algebra, and a entire section focusing on how to write the subroutines in C++, Matlab and Maple to carry out efficient geometric computations in the geometric algebra framework. Lastly, it shows how program code can be optimized for real-time computations. An essential resource for applied physicists, computer scientists, AI researchers, roboticists and mechanical and electrical engineers, the book clarifies and demon- strates the importance of geometric computing for building autonomous systems to advance cognitive systems research.