Airline Passenger Satisfaction Analysis And Prediction Using Machine Learning And Deep Learning With Python


Download Airline Passenger Satisfaction Analysis And Prediction Using Machine Learning And Deep Learning With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Airline Passenger Satisfaction Analysis And Prediction Using Machine Learning And Deep Learning With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python


AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python

Author: Vivian Siahaan

language: en

Publisher: BALIGE PUBLISHING

Release Date: 2023-08-08


DOWNLOAD





In the project "Airline Passenger Satisfaction Analysis and Prediction Using Machine Learning and Deep Learning with Python," the aim was to analyze and predict passenger satisfaction in the airline industry. The project began with an extensive data exploration phase, wherein the dataset containing various features related to passenger experiences was thoroughly examined. The dataset was then preprocessed, ensuring data cleanliness and preparing it for further analysis. One of the initial steps involved understanding the distribution of categorized features within the dataset. By visualizing the distribution of these features, insights were gained into the prevalence of different categories, providing a preliminary understanding of passenger preferences and experiences. For the prediction aspect, machine learning models were employed, and a Grid Search approach was implemented to fine-tune hyperparameters and optimize model performance. This process allowed the identification of the best-performing model configuration, enhancing the accuracy of passenger satisfaction predictions. The models used are Logistic Regression, Support Vector Machines, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting. Going beyond traditional machine learning, a Deep Learning approach was introduced using an Artificial Neural Network (ANN). This model, designed to capture intricate patterns and relationships within the data, showcased the potential of deep learning for improving predictive accuracy. The evaluation of both machine learning and deep learning models was centered around key metrics. The accuracy score was a primary indicator of model performance, reflecting the ratio of correctly predicted passenger satisfaction outcomes. Additionally, the Classification Report provided a comprehensive overview of precision, recall, and F1-score for each category, shedding light on the model's ability to classify passenger satisfaction levels accurately. Visualizing the results played a pivotal role in the project. The plotted Training and Validation Accuracy and Loss graphs offered insights into the convergence and generalization capabilities of the models. These visualizations helped in understanding potential overfitting or underfitting issues and guided the fine-tuning process. To assess the models' predictive performance, a Confusion Matrix was constructed. This matrix presented a clear breakdown of correct and incorrect predictions, facilitating an understanding of where the model excelled and where it struggled. Furthermore, scatter plots were utilized to visually compare the predicted values against the actual true values, offering a tangible representation of the models' effectiveness. Throughout the project, rigorous data preprocessing and feature engineering were integral to improving model accuracy. Features were appropriately scaled, and categorical variables were transformed using techniques like one-hot encoding, enabling models to efficiently learn from the data. The project also focused on the interpretability of the models, enabling stakeholders to comprehend the factors influencing passenger satisfaction predictions. This interpretability was essential for making informed business decisions based on the model insights. In conclusion, the project showcased a comprehensive approach to analyzing and predicting airline passenger satisfaction. Through meticulous data exploration, feature distribution analysis, machine learning model selection, hyperparameter tuning, and deep learning implementation, the project provided valuable insights for the airline industry. By utilizing a combination of machine learning and deep learning techniques, the project demonstrated a holistic approach to understanding and enhancing passenger experiences and satisfaction levels.

ANALYSIS AND PREDICTION PROJECTS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON


ANALYSIS AND PREDICTION PROJECTS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON

Author: Vivian Siahaan

language: en

Publisher: BALIGE PUBLISHING

Release Date: 2022-02-17


DOWNLOAD





PROJECT 1: DEFAULT LOAN PREDICTION BASED ON CUSTOMER BEHAVIOR Using Machine Learning and Deep Learning with Python In finance, default is failure to meet the legal obligations (or conditions) of a loan, for example when a home buyer fails to make a mortgage payment, or when a corporation or government fails to pay a bond which has reached maturity. A national or sovereign default is the failure or refusal of a government to repay its national debt. The dataset used in this project belongs to a Hackathon organized by "Univ.AI". All values were provided at the time of the loan application. Following are the features in the dataset: Income, Age, Experience, Married/Single, House_Ownership, Car_Ownership, Profession, CITY, STATE, CURRENT_JOB_YRS, CURRENT_HOUSE_YRS, and Risk_Flag. The Risk_Flag indicates whether there has been a default in the past or not. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python The dataset used in this project contains an airline passenger satisfaction survey. In this case, you will determine what factors are highly correlated to a satisfied (or dissatisfied) passenger and predict passenger satisfaction. Below are the features in the dataset: Gender: Gender of the passengers (Female, Male); Customer Type: The customer type (Loyal customer, disloyal customer); Age: The actual age of the passengers; Type of Travel: Purpose of the flight of the passengers (Personal Travel, Business Travel); Class: Travel class in the plane of the passengers (Business, Eco, Eco Plus); Flight distance: The flight distance of this journey; Inflight wifi service: Satisfaction level of the inflight wifi service (0:Not Applicable;1-5); Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient; Ease of Online booking: Satisfaction level of online booking; Gate location: Satisfaction level of Gate location; Food and drink: Satisfaction level of Food and drink; Online boarding: Satisfaction level of online boarding; Seat comfort: Satisfaction level of Seat comfort; Inflight entertainment: Satisfaction level of inflight entertainment; On-board service: Satisfaction level of On-board service; Leg room service: Satisfaction level of Leg room service; Baggage handling: Satisfaction level of baggage handling; Check-in service: Satisfaction level of Check-in service; Inflight service: Satisfaction level of inflight service; Cleanliness: Satisfaction level of Cleanliness; Departure Delay in Minutes: Minutes delayed when departure; Arrival Delay in Minutes: Minutes delayed when Arrival; and Satisfaction: Airline satisfaction level (Satisfaction, neutral or dissatisfaction) The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CREDIT CARD CHURNING CUSTOMER ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON The dataset used in this project consists of more than 10,000 customers mentioning their age, salary, marital_status, credit card limit, credit card category, etc. There are 20 features in the dataset. In the dataset, there are only 16.07% of customers who have churned. Thus, it's a bit difficult to train our model to predict churning customers. Following are the features in the dataset: 'Attrition_Flag', 'Customer_Age', 'Gender', 'Dependent_count', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category', 'Months_on_book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', and 'Avg_Utilization_Ratio',. The target variable is 'Attrition_Flag'. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: MARKETING ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON This data set was provided to students for their final project in order to test their statistical analysis skills as part of a MSc. in Business Analytics. It can be utilized for EDA, Statistical Analysis, and Visualizations. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; Complain = 1 if customer complained in the last 2 years, 0 otherwise; and Country = Customer's location. The machine and deep learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 5: METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Meteorological phenomena are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, water vapour, mass flow, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project consists of meteorological data with 96453 total number of data points and with 11 attributes/columns. Following are the columns in the dataset: Formatted Date; Summary; Precip Type; Temperature (C); Apparent Temperature (C); Humidity; Wind Speed (km/h); Wind Bearing (degrees); Visibility (km); Pressure (millibars); and Daily Summary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Artificial Intelligence and Machine Learning in the Travel Industry


Artificial Intelligence and Machine Learning in the Travel Industry

Author: Ben Vinod

language: en

Publisher: Springer Nature

Release Date: 2023-05-26


DOWNLOAD





Over the past decade, Artificial Intelligence has proved invaluable in a range of industry verticals such as automotive and assembly, life sciences, retail, oil and gas, and travel. The leading sectors adopting AI rapidly are Financial Services, Automotive and Assembly, High Tech and Telecommunications. Travel has been slow in adoption, but the opportunity for generating incremental value by leveraging AI to augment traditional analytics driven solutions is extremely high. The contributions in this book, originally published as a special issue for the Journal of Revenue and Pricing Management, showcase the breadth and scope of the technological advances that have the potential to transform the travel experience, as well as the individuals who are already putting them into practice.