Ai Beginner S Guide

Download Ai Beginner S Guide PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ai Beginner S Guide book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Artificial Intelligence

This jargon-free guide introduces the futuristic world of Artificial Intelligence, the science of creating machines that can think for themselves.
Introduction to Artificial Intelligence

This AI beginner’s guide aims to take the readers through the current AI landscape, provides the key fundamentals and terminologies of AI, and offers practical guidelines on why and how you can be a part of the AI revolution, and also the ways in which you can scale up your AI career.
Hands-On Artificial Intelligence for Beginners

Author: Patrick D. Smith
language: en
Publisher: Packt Publishing Ltd
Release Date: 2018-10-31
Grasp the fundamentals of Artificial Intelligence and build your own intelligent systems with ease Key FeaturesEnter the world of AI with the help of solid concepts and real-world use casesExplore AI components to build real-world automated intelligenceBecome well versed with machine learning and deep learning conceptsBook Description Virtual Assistants, such as Alexa and Siri, process our requests, Google's cars have started to read addresses, and Amazon's prices and Netflix's recommended videos are decided by AI. Artificial Intelligence is one of the most exciting technologies and is becoming increasingly significant in the modern world. Hands-On Artificial Intelligence for Beginners will teach you what Artificial Intelligence is and how to design and build intelligent applications. This book will teach you to harness packages such as TensorFlow in order to create powerful AI systems. You will begin with reviewing the recent changes in AI and learning how artificial neural networks (ANNs) have enabled more intelligent AI. You'll explore feedforward, recurrent, convolutional, and generative neural networks (FFNNs, RNNs, CNNs, and GNNs), as well as reinforcement learning methods. In the concluding chapters, you'll learn how to implement these methods for a variety of tasks, such as generating text for chatbots, and playing board and video games. By the end of this book, you will be able to understand exactly what you need to consider when optimizing ANNs and how to deploy and maintain AI applications. What you will learnUse TensorFlow packages to create AI systemsBuild feedforward, convolutional, and recurrent neural networksImplement generative models for text generationBuild reinforcement learning algorithms to play gamesAssemble RNNs, CNNs, and decoders to create an intelligent assistantUtilize RNNs to predict stock market behaviorCreate and scale training pipelines and deployment architectures for AI systemsWho this book is for This book is designed for beginners in AI, aspiring AI developers, as well as machine learning enthusiasts with an interest in leveraging various algorithms to build powerful AI applications.