Agent Based Models And Causal Inference


Download Agent Based Models And Causal Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Agent Based Models And Causal Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Agent-based Models and Causal Inference


Agent-based Models and Causal Inference

Author: Gianluca Manzo

language: en

Publisher: John Wiley & Sons

Release Date: 2022-01-28


DOWNLOAD





Agent-based Models and Causal Inference Scholars of causal inference have given little credence to the possibility that ABMs could be an important tool in warranting causal claims. Manzo’s book makes a convincing case that this is a mistake. The book starts by describing the impressive progress that ABMs have made as a credible methodology in the last several decades. It then goes on to compare the inferential threats to ABMs versus the traditional methods of RCTs, regression, and instrumental variables showing that they have a common vulnerability of being based on untestable assumptions. The book concludes by looking at four examples where an analysis based on ABMs complements and augments the evidence for specific causal claims provided by other methods. Manzo has done a most convincing job of showing that ABMs can be an important resource in any researcher’s tool kit. —Christopher Winship, Diker-Tishman Professor of Sociology, Harvard University, USA Agent-based Models and Causal Inference is a first-rate contribution to the debate on, and practice of, causal claims. With exemplary rigor, systematic precision and pedagogic clarity, this book contrasts the assumptions about causality that undergird agent-based models, experimental methods, and statistically based observational methods, discusses the challenges these methods face as far as inferences go, and, in light of this discussion, elaborates the case for combining these methods’ respective strengths: a remarkable achievement. —Ivan Ermakoff, Professor of Sociology, University of Wisconsin-Madison, USA Agent-based models are a uniquely powerful tool for understanding how patterns in society may arise in often surprising and counter-intuitive ways. This book offers a strong and deeply reflected argument for how ABM’s can do much more: add to actual empirical explanation. The work is of great value to all social scientists interested in learning how computational modelling can help unraveling the complexity of the real social world. —Andreas Flache, Professor of Sociology at the University of Groningen, Netherlands Agent-based Models and Causal Inference is an important and much-needed contribution to sociology and computational social science. The book provides a rigorous new contribution to current understandings of the foundation of causal inference and justification in the social sciences. It provides a powerful and cogent alternative to standard statistical causal-modeling approaches to causation. Especially valuable is Manzo’s careful analysis of the conditions under which an agent-based simulation is relevant to causal inference. The book represents an exceptional contribution to sociology, the philosophy of social science, and the epistemology of simulations and models. —Daniel Little, Professor of philosophy, University of Michigan, USA Agent-based Models and Causal Inference delivers an insightful investigation into the conditions under which different quantitative methods can legitimately hold to be able to establish causal claims. The book compares agent-based computational methods with randomized experiments, instrumental variables, and various types of causal graphs. Organized in two parts, Agent-based Models and Causal Inference connects the literature from various fields, including causality, social mechanisms, statistical and experimental methods for causal inference, and agent-based computation models to help show that causality means different things within different methods for causal analysis, and that persuasive causal claims can only be built at the intersection of these various methods. Readers will also benefit from the inclusion of: A thorough comparison between agent-based computation models to randomized experiments, instrumental variables, and several types of causal graphs A compelling argument that observational and experimental methods are not qualitatively superior to simulation-based methods in their ability to establish causal claims Practical discussions of how statistical, experimental and computational methods can be combined to produce reliable causal inferences Perfect for academic social scientists and scholars in the fields of computational social science, philosophy, statistics, experimental design, and ecology, Agent-based Models and Causal Inference will also earn a place in the libraries of PhD students seeking a one-stop reference on the issue of causal inference in agent-based computational models.

Causality in Policy Studies


Causality in Policy Studies

Author: Alessia Damonte

language: en

Publisher: Springer Nature

Release Date: 2023-02-13


DOWNLOAD





This volume provides a methodological toolbox for conducting policy research. Recognizing that policy research spans various academic disciplines, each of which takes a different view on causality, the volume introduces a methodologically pluralistic approach to policy studies. Each chapter clarifies the research question that each technique can answer, the research design and data treatment that each technique requires for its results to be sound, the validity domain of its results, and the actual deployment of the technique through a replicable example. Techniques covered include quasi-experimental designs, approaches to account for selection bias and observed imbalances, directed acyclic graphs and structural equation models, Qualitative Comparative Analysis, Bayesian case study and process tracing, and Agent-Based Modelling. By working through the volume, readers will understand how to learn from different techniques, apply them consciously, and triangulate them to make better sense of findings. This volume is intended for advanced academic courses, as well as scholars and practitioners in policy-related fields, such as political science, economics, sociology, and public administration. This is an open access book.

The Routledge Handbook of Causality and Causal Methods


The Routledge Handbook of Causality and Causal Methods

Author: Phyllis Illari

language: en

Publisher: Taylor & Francis

Release Date: 2024-12-30


DOWNLOAD





The Routledge Handbook of Causality and Causal Methods adopts a pluralistic, interdisciplinary approach to causality. It formulates distinct questions and problems of causality as they arise across scientific and policy fields. Exploring, in a comparative way, how these questions and problems are addressed in different areas, the Handbook fosters dialogue and exchange. It emphasizes the role of the researchers and the normative considerations that arise in the development of methodological and empirical approaches. The Handbook includes authors from all over the world and with many different disciplinary backgrounds, and its 50 chapters appear in print here for the first time. The chapters are organized into the following seven parts: Causal Pluralism from Theory to Practice Causal Theory and the Role of Researchers Features of Causal Systems Causal Methods, Experimentation and Observation Measurement and Data Causality, Knowledge, and Action Causal Theory across Disciplinary Borders Essential reading for scholars interested in an interdisciplinary approach to causality and causal methods, the volume is also a valuable resource for advanced undergraduates as well as for graduate students interested in delving into the rich field of causality. Chapters 15 and 36 of this book are freely available as downloadable Open Access PDFs at http://www.taylorfrancis.com under a Creative Commons [Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND)] 4.0 license.