Affine Arithmetic Based Solution Of Uncertain Static And Dynamic Problems

Download Affine Arithmetic Based Solution Of Uncertain Static And Dynamic Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Affine Arithmetic Based Solution Of Uncertain Static And Dynamic Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Affine Arithmetic Based Solution of Uncertain Static and Dynamic Problems

Author: Snehashish Chakraverty
language: en
Publisher: Springer Nature
Release Date: 2022-05-31
Uncertainty is an inseparable component of almost every measurement and occurrence when dealing with real-world problems. Finding solutions to real-life problems in an uncertain environment is a difficult and challenging task. As such, this book addresses the solution of uncertain static and dynamic problems based on affine arithmetic approaches. Affine arithmetic is one of the recent developments designed to handle such uncertainties in a different manner which may be useful for overcoming the dependency problem and may compute better enclosures of the solutions. Further, uncertain static and dynamic problems turn into interval and/or fuzzy linear/nonlinear systems of equations and eigenvalue problems, respectively. Accordingly, this book includes newly developed efficient methods to handle the said problems based on the affine and interval/fuzzy approach. Various illustrative examples concerning static and dynamic problems of structures have been investigated in order to showthe reliability and efficacy of the developed approaches.
Soft Computing in Interdisciplinary Sciences

This book meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of soft computing on the other. Soft computing is the recent development about the computing methods which include fuzzy set theory/logic, evolutionary computation (EC), probabilistic reasoning, artificial neural networks, machine learning, expert systems, etc. Soft computing refers to a partnership of computational techniques in computer science, artificial intelligence, machine learning, and some other engineering disciplines, which attempt to study, model, and analyze complex problems from different interdisciplinary problems. This, as opposed to traditional computing, deals with approximate models and gives solutions to complex real-life problems. Unlike hard computing, soft computing is tolerant of imprecision, uncertainty, partial truth, and approximations. Interdisciplinary sciences include various challenging problems of science and engineering. Recent developments in soft computing are the bridge to handle different interdisciplinary science and engineering problems. In recent years, the correspondingly increased dialog between these disciplines has led to this new book. This is done, firstly, by encouraging the ways that soft computing may be applied in traditional areas, as well as point towards new and innovative areas of applications and secondly, by encouraging other scientific disciplines to engage in a dialog with the above computation algorithms outlining their problems to both access new methods as well as to suggest innovative developments within itself.
Artificial Neural Networks and Type-2 Fuzzy Set

Soft computing is an emerging discipline which aims to exploit tolerance for imprecision, approximate reasoning, and uncertainty to achieve robustness, tractability, and cost effectiveness for building intelligent machines. Soft computing methodologies include neural networks, fuzzy sets, genetic algorithms, Bayesian networks, and rough sets, among others. In this regard, neural networks are widely used for modeling dynamic solvers, classification of data, and prediction of solutions, whereas fuzzy sets provide a natural framework for dealing with uncertainty. Artificial Neural Networks and Type-2 Fuzzy Set: Elements of Soft Computing and Its Applications covers the fundamental concepts and the latest research on variants of Artificial Neural Networks (ANN), including scientific machine learning and Type-2 Fuzzy Set (T2FS). In addition, the book also covers different applications for solving real-world problems along with various examples and case studies. It may be noted that quite a bit of research has been done on ANN and Fuzzy Set theory/ Fuzzy logic. However, Artificial Neural Networks and Type-2 Fuzzy Set is the first book to cover the use of ANN and fuzzy set theory with regards to Type-2 Fuzzy Set in static and dynamic problems in one place. Artificial Neural Networks and Type-2 Fuzzy Sets are two of the most widely used computational intelligence techniques for solving complex problems in various domains. Both ANN and T2FS have unique characteristics that make them suitable for different types of problems. This book provides the reader with in-depth understanding of how to apply these computational intelligence techniques in various fields of science and engineering in general and static and dynamic problems in particular. Further, for validation purposes of the ANN and fuzzy models, the obtained solutions of each model in the book is compared with already existing solutions that have been obtained with numerical or analytical methods. - Covers the fundamental concepts and the latest research on variants of Artificial Neural Networks, including scientific machine learning and Type-2 Fuzzy Set - Discusses the integration of ANN and Type-2 Fuzzy Set, showing how combining these two approaches can enhance the performance and robustness of intelligent systems - Demonstrates how to solve scientific and engineering research problems through a variety of real-world examples and case studies - Includes coverage of both static and dynamic problems, along with validation of ANN and Fuzzy models by comparing the obtained solutions of each model with already existing solutions that have been obtained with numerical or analytical methods