Advances In Stochastic Modelling And Data Analysis

Download Advances In Stochastic Modelling And Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Stochastic Modelling And Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advances in Stochastic Modelling and Data Analysis

Author: Jacques Janssen
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
Advances in Stochastic Modelling and Data Analysis presents the most recent developments in the field, together with their applications, mainly in the areas of insurance, finance, forecasting and marketing. In addition, the possible interactions between data analysis, artificial intelligence, decision support systems and multicriteria analysis are examined by top researchers. Audience: A wide readership drawn from theoretical and applied mathematicians, such as operations researchers, management scientists, statisticians, computer scientists, bankers, marketing managers, forecasters, and scientific societies such as EURO and TIMS.
An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Stochastic Modelling of Electricity and Related Markets

The markets for electricity, gas and temperature have distinctive features, which provide the focus for countless studies. For instance, electricity and gas prices may soar several magnitudes above their normal levels within a short time due to imbalances in supply and demand, yielding what is known as spikes in the spot prices. The markets are also largely influenced by seasons, since power demand for heating and cooling varies over the year. The incompleteness of the markets, due to nonstorability of electricity and temperature as well as limited storage capacity of gas, makes spot-forward hedging impossible. Moreover, futures contracts are typically settled over a time period rather than at a fixed date. All these aspects of the markets create new challenges when analyzing price dynamics of spot, futures and other derivatives.This book provides a concise and rigorous treatment on the stochastic modeling of energy markets. Ornstein?Uhlenbeck processes are described as the basic modeling tool for spot price dynamics, where innovations are driven by time-inhomogeneous jump processes. Temperature futures are studied based on a continuous higher-order autoregressive model for the temperature dynamics. The theory presented here pays special attention to the seasonality of volatility and the Samuelson effect. Empirical studies using data from electricity, temperature and gas markets are given to link theory to practice.