Advances In Knowledge Discovery And Data Mining

Download Advances In Knowledge Discovery And Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Knowledge Discovery And Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advances in Machine Learning and Data Mining for Astronomy

Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book’s introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
Relational Data Mining

Author: Saso Dzeroski
language: en
Publisher: Springer Science & Business Media
Release Date: 2001-08
As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
Advances in Knowledge Discovery and Data Mining, Part I

The two-volume set LNAI 7301 and 7302 constitutes the refereed proceedings of the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2012, held in Kuala Lumpur, Malaysia, in May 2012. The total of 20 revised full papers and 66 revised short papers were carefully reviewed and selected from 241 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas. The papers are organized in topical sections on supervised learning: active, ensemble, rare-class and online; unsupervised learning: clustering, probabilistic modeling in the first volume and on pattern mining: networks, graphs, time-series and outlier detection, and data manipulation: pre-processing and dimension reduction in the second volume.