Advances In Deep Generative Modeling For Clinical Data


Download Advances In Deep Generative Modeling For Clinical Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Deep Generative Modeling For Clinical Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Advances in Deep Generative Models for Medical Artificial Intelligence


Advances in Deep Generative Models for Medical Artificial Intelligence

Author: Hazrat Ali

language: en

Publisher: Springer Nature

Release Date: 2023-12-16


DOWNLOAD





Generative Artificial Intelligence is rapidly advancing with many state-of-the-art performances on computer vision, speech processing, and natural language processing tasks. Generative adversarial networks and neural diffusion models can generate high-quality synthetic images of human faces, artworks, and coherent essays on different topics. Generative models are also transforming Medical Artificial Intelligence, given their potential to learn complex features from medical imaging and healthcare data. Hence, computer-aided diagnosis and healthcare are benefiting from Medical Artificial Intelligence and Generative Artificial Intelligence. This book presents the recent advances in generative models for Medical Artificial Intelligence. It covers many applications of generative models for medical image data, including volumetric medical image segmentation, data augmentation, MRI reconstruction, and modeling of spatiotemporal medical data. This book highlights the recent advancements in Generative Artificial Intelligence for medical and healthcare applications, using medical imaging and clinical and electronic health records data. Furthermore, the book comprehensively presents the concepts and applications of deep learning-based artificial intelligence methods, such as generative adversarial networks, convolutional neural networks, and vision transformers. It also presents a quantitative and qualitative analysis of data augmentation and synthesis performances of Generative Artificial Intelligence models. This book is the result of the collaborative efforts and hard work of many minds who contributed to it and illuminated the vast landscape of Medical Artificial Intelligence. The book is suitable for reading by computer science researchers, medical professionals, healthcare informatics, and medical imaging researchers interested in understanding the potential of artificial intelligence in healthcare. It serves as a compass for navigating the artificial intelligence-driven healthcare landscape.

Advances in Deep Generative Modeling for Clinical Data


Advances in Deep Generative Modeling for Clinical Data

Author: Rahul Gopalkrishnan

language: en

Publisher:

Release Date: 2020


DOWNLOAD





The intelligent use of electronic health record data opens up new opportunities to improve clinical care. Such data have the potential to uncover new sub-types of a disease, approximate the effect of a drug on a patient, and create tools to find patients with similar phenotypic profiles. Motivated by such questions, this thesis develops new algorithms for unsupervised and semi-supervised learning of latent variable, deep generative models – Bayesian networks parameterized by neural networks. To model static, high-dimensional data, we derive a new algorithm for inference in deep generative models. The algorithm, a hybrid between stochastic variational inference and amortized variational inference, improves the generalization of deep generative models on data with long-tailed distributions. We develop gradient-based approaches to interpret the parameters of deep generative models, and fine-tune such models using supervision to tackle problems that arise in few-shot learning. To model longitudinal patient biomarkers as they vary due to treatment we propose Deep Markov Models (DMMs). We design structured inference networks for variational learning in DMMs; the inference network parameterizes a variational approximation which mimics the factorization of the true posterior distribution. We leverage insights in pharmacology to design neural architectures which improve the generalization of DMMs on clinical problems in the low-data regime. We show how to capture structure in longitudinal data using deep generative models in order to reduce the sample complexity of nonlinear classifiers thus giving us a powerful tool to build risk stratification models from complex data.

Introduction to Deep Learning for Healthcare


Introduction to Deep Learning for Healthcare

Author: Cao Xiao

language: en

Publisher: Springer Nature

Release Date: 2021-11-11


DOWNLOAD





This textbook presents deep learning models and their healthcare applications. It focuses on rich health data and deep learning models that can effectively model health data. Healthcare data: Among all healthcare technologies, electronic health records (EHRs) had vast adoption and a significant impact on healthcare delivery in recent years. One crucial benefit of EHRs is to capture all the patient encounters with rich multi-modality data. Healthcare data include both structured and unstructured information. Structured data include various medical codes for diagnoses and procedures, lab results, and medication information. Unstructured data contain 1) clinical notes as text, 2) medical imaging data such as X-rays, echocardiogram, and magnetic resonance imaging (MRI), and 3) time-series data such as the electrocardiogram (ECG) and electroencephalogram (EEG). Beyond the data collected during clinical visits, patient self-generated/reported data start to grow thanks to wearable sensors’ increasing use. The authors present deep learning case studies on all data described. Deep learning models: Neural network models are a class of machine learning methods with a long history. Deep learning models are neural networks of many layers, which can extract multiple levels of features from raw data. Deep learning applied to healthcare is a natural and promising direction with many initial successes. The authors cover deep neural networks, convolutional neural networks, recurrent neural networks, embedding methods, autoencoders, attention models, graph neural networks, memory networks, and generative models. It’s presented with concrete healthcare case studies such as clinical predictive modeling, readmission prediction, phenotyping, x-ray classification, ECG diagnosis, sleep monitoring, automatic diagnosis coding from clinical notes, automatic deidentification, medication recommendation, drug discovery (drug property prediction and molecule generation), and clinical trial matching. This textbook targets graduate-level students focused on deep learning methods and their healthcare applications. It can be used for the concepts of deep learning and its applications as well. Researchers working in this field will also find this book to be extremely useful and valuable for their research.