Advances In Biopolymers

Download Advances In Biopolymers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Biopolymers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Recent Advances in Biopolymers

Author: Farzana Khan Perveen
language: en
Publisher: BoD – Books on Demand
Release Date: 2016-03-09
This book contains 10 Chapters divided into three Sections. Section A covers synthesis of biopolymers. Lignocellulosic feedstock contains cellulose, hemicellulose, and lignin, which are used for synthesis of biopolymers. Polymer-coated noble metal nanoparticles are used in nanobiomedicine and fundamental biomaterials. Section B describes applications of biopolymers in biomedical, antimicrobial, industrial, nanotechnology, laser-based thin films, and regenerative medicines. Section C is dedicated for advancement and engineering in biopolymers for personal protective garments, equipments, membrane separation processes, purifications, and new generation of high-performance biomaterials. A new numerical-cum-graphical method called TI2BioP (Topological Indices to BioPolymers) has been developed to estimate topological indices (TIs) from two-dimensional (2D) graphical approaches for the natural biopolymers DNA, RNA, and proteins.
Current Advances in Biopolymer Processing and Characterization

The book presents current R&D activities to unravel the physico-chemical properties of diverse biopolymers, and their processing towards functionalised, high-performance bio-products with defined applications. The importance of this research becomes obvious by considering the annual plastic production of about 330 Mt, the lion's share thereof based on the conversion of fossil feedstocks that is highly recalcitrant against biodegradation. Alternative environmentally degradable plastics cover not even 5% of today's plastic market. Such biopolymers encompass various macromolecules of biological origin with diverse monomeric composition, and manifold physico-chemical properties. This structural diversity makes them potential candidates to produce bulk materials, e.g., for packaging purposes, smart functionalised materials in special niches like the biomedical field. Consequently, we witness an increasing trend towards new natural polymers to replace well-established products like plastics. After decades of global R&D developments in this field, and numerous body blows on the way to the anticipated market breakthrough of biopolymers, it is generally recognised that the success of such new materials needs progress in both material performance and production prices. The book Current Advances in Biopolymer Processing & Characterisation is dedicated to the current state-of-the-art of production, modification, characterisation, and processing of two major biopolymer groups: Firstly, polysaccharides, nature's most abundant raw materials, are represented by specialised contributions on biomedical applications of starch and its follow-up products. Polysaccharides were also studied for the examples of functionalised thermoplastic starch, molecular and hydrocolloidal characteristics of xanthan in aqueous environments, and by the design of functionalised xylan-based bio-materials. Secondly, the second series of contributions encompasses diverse biopolyesters. Advanced methods to improve the properties of PLA, fine-tune PLA properties by triggering PLA's crystallisation rate during melt processing, and the strongly emerging field of 3D-printing of PLA, PCL, and microbial PHA are described. Finally, the authors familiarise the reader with the application of mixed microbial cultures to produce PHA heteropolyesters with different thermo-mechanical properties in dependence on cultivation strategy and the microbial species composition. This compilation of new biomaterials with surprising functions and performance, based on these natural polymers will address scientists active in biopolymers production, functionalisation, characterisation, and processing towards bio-technomers. The book is also dedicated to undergraduate students of polymer chemistry and polymer processing, and to representatives of the polymer industry who are interested in developing innovative, sustainable and smart polymeric products. Activities motivated by reading this book shall boost the impatiently desired market penetration of biopolymers and their follow-up products. Such materials definitely display a socioeconomic impact by addressing prevailing ecological concerns such as depleting fossil resources, growing piles of plastic waste, and increasing global warming. The contributions to this book illustrate that bio-inspired remedies for prevalent ecological problems are already available, developed by experts in polymer sciences and engineering, or that these solutions are at least in the status of development.
Biopolymers

This book describes the structure, performance and applications of biopolymers. It contains thirteen chapters: Chapter One describes the general introduction of biopolymers, while Chapter Two deals with environmental perspectives that biopolymers are involved in. Chapter Three deals with the surface nanostructuring of biopolymers for tissue engineering. Chapter Four describes the nanomaterials as an emerging opportunity for purifying drinking water. Chapter Five is based on the microalgal engineering of biopolymers, while Chapter Six contains information on the lignocellulosic biomass used to obtain polyhydroxybutyrate as a biopolymer under. Chapter Seven mainly discusses chitosan as a biomedical material (properties and applications), and Chapter Eight introduces details about gum ghatti (Anogeissus latifolia), a proteinaceous edible biopolymer and its multifaceted biological applications. Chapter Nine describes the recent advances in biopolymers for innovative food packaging, while Chapter Ten discusses the potential production of polyhydroxybutyrate from renewable feedstocks. Chapter Eleven contains information about biopolymer stabilization of fly ash and coal mine overburden for erosion resistance, whereas Chapter Twelve describes in detail the structure, features and applications of biopolymers. Finally, Chapter Thirteen summarizes the recent trends concerning biopolymers. The current book will be highly beneficial to researchers working in the area of biopolymers, polymer chemistry, materials science, engineering, drug delivery, medicine, waste management, environmental science and waste water research. This book also covers information concerning natural biopolymers, biotechnology, biocomposites and bioplastics for a variety of environmental applications. The potential researchers working in the area will benefit from the fundamental concepts, advanced approaches and applications. The book also provides a platform for all researchers to carry out biopolymer research mainly towards its structure, performance and application, and also covers fundamental background information in the area. The book also covers recent advancements in the area as well as prospects about the future research and development of biopolymers.