Advances In An Open Source Direct Simulation Monte Carlo Technique For Hypersonic Rarefied Gas Flows

Download Advances In An Open Source Direct Simulation Monte Carlo Technique For Hypersonic Rarefied Gas Flows PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In An Open Source Direct Simulation Monte Carlo Technique For Hypersonic Rarefied Gas Flows book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advances in an Open-source Direct Simulation Monte Carlo Technique for Hypersonic Rarefied Gas Flows

Hypersonic vehicles that travel through rarefied gas environments are very expensive to design through experimental methods. In the last few decades major work has been carried out in developing numerical methods to capture these types of flows to a certain degree of accuracy. This accuracy is increased using particle based numerical techniques as opposed to continuum computational fluid dynamics. However, one of the modern problems of particle based techniques is the high computational cost associated with it. This thesis presents an enhanced open-source particle based technique to capture high speed rarefied gas flows. This particle based technique is called dsmcFoam and is based on the direct simulation Monte Carlo technique. As a result of the author's work dsmcFoam has become more efficient and accurate. Benchmark studies of the standard dsmcFoam solver will be presented before introducing the main advances. The results of the benchmark investigations are compared with analytical solutions, other DSMC codes and experimental data available in the literature. And excellent agreement is found when good DSMC practice has been followed. The main advances of dsmcFoam discussed are a routine for selecting collision pairs called the transient adaptive sub-cell (TASC) method and a dynamic wall temperature model (DWTM). The DWTM relates the wall temperature to the heat flux. In addition, verification and validation studies are undertaken of the DWTM. Furthermore, the widely used conventional 8 sub-cell method used to select possible collision pairs becomes very cumbersome to employ properly. This is because many mesh refinement stages are required in order to obtain accurate data. Instead of mesh refinement the TASC technique automatically employs more sub-cells, and these sub-cells are based on the number of particles in a cell. Finally, parallel efficiency tests of dsmcFoam are presented in this thesis along with a new domain decomposition technique for parallel processing. This technique splits up the computational domain based on the number of particles, such that each processor has the same number of particles to work with.
29th International Symposium on Shock Waves 1

This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interested in these fields.
Stardust Final Conference

Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and Attitude Determination Impact Prediction and Risk Analysis, Mission Analysis-Proximity Operations, Active Removal/Deflection Control Under Uncertainty, Active Removal/Deflection Technologies, and Asteroid Manipulation