Advancements In Artificial Intelligence And Machine Learning


Download Advancements In Artificial Intelligence And Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advancements In Artificial Intelligence And Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Artificial Intelligence and Machine Learning Fundamentals


Artificial Intelligence and Machine Learning Fundamentals

Author: Zsolt Nagy

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-12-12


DOWNLOAD





Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).

Advancements in Artificial Intelligence and Machine Learning


Advancements in Artificial Intelligence and Machine Learning

Author: Asif Khan, Mohammad Kamrul Hasan, Naushad Varish, Mohammed Aslam Husain

language: en

Publisher: Bentham Science Publishers

Release Date: 2025-06-19


DOWNLOAD





Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing industries, reshaping the way we interact with technology, and driving innovation across multiple disciplines. Advancements in Artificial Intelligence and Machine Learning is a comprehensive exploration of the latest developments, applications, and challenges in AI and ML, offering insights into cutting-edge research and real-world implementations. This book is a collection of twelve chapters, each exploring a distinct application of Artificial Intelligence (AI) and Machine Learning (ML). It begins with an overview of AI’s transformative role in Next-Gen Mechatronics, followed by a comprehensive review of key advancements and trends in the field. The book then examines AI’s impact across diverse sectors, including energy, digital communication, and security, with topics such as AI-based aging analysis of power transformer oil, AI in social media management, and AI-driven human detection systems. Further chapters address sentiment analysis, visual analysis for image processing, and the integration of AI in smart grid networks. The volume also covers AI applications in hardware security for wireless sensor networks, drone robotics, and crime prevention systems. The final set of chapters highlight AI’s role in healthcare and automation, including an AI-assisted system for women’s safety in India and the use of EfficientNet B0 CNN architecture for brain tumor detection and classification. Together, these chapters showcase the versatility and growing influence of AI and ML across critical modern industries. Key features A multidisciplinary approach covering AI applications in robotics, cybersecurity, healthcare, and digital transformation in 12 organized chapters. A focus on contemporary challenges and solutions in AI and ML across industries. Research-driven insights from experts and practitioners in the field. Practical discussions on AI-driven automation, security, and intelligent decision-making systems.

Artificial Intelligence in Healthcare


Artificial Intelligence in Healthcare

Author: Adam Bohr

language: en

Publisher: Academic Press

Release Date: 2020-06-21


DOWNLOAD





Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data