Advanced Engineering Mathematics With Matlab Second Edition


Download Advanced Engineering Mathematics With Matlab Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Engineering Mathematics With Matlab Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Advanced Engineering Mathematics with MATLAB, Second Edition


Advanced Engineering Mathematics with MATLAB, Second Edition

Author: Dean G. Duffy

language: en

Publisher: CRC Press

Release Date: 2003-03-28


DOWNLOAD





Resoundingly popular in its first edition, Dean Duffy's Advanced Engineering Mathematics has been updated, expanded, and now more than ever provides the solid mathematics background required throughout the engineering disciplines. Melding the author's expertise as a practitioner and his years of teaching engineering mathematics, this text stands clearly apart from the many others available. Relevant, insightful examples follow nearly every concept introduced and demonstrate its practical application. This edition includes two new chapters on differential equations, another on Hilbert transforms, and many new examples, problems, and projects that help build problem-solving skills. Most importantly, the book now incorporates the use of MATLAB throughout the presentation to reinforce the concepts presented. MATLAB code is included so readers can take an analytic result, fully explore it graphically, and gain valuable experience with this industry-standard software.

Advanced Engineering Mathematics


Advanced Engineering Mathematics

Author: Dean G. Duffy

language: en

Publisher: CRC Press

Release Date: 2022-03-22


DOWNLOAD





Through four previous editions of Advanced Engineering Mathematics with MATLAB, the author presented a wide variety of topics needed by today's engineers. The fifth edition of that book, available now, has been broken into two parts: topics currently needed in mathematics courses and a new stand-alone volume presenting topics not often included in these courses and consequently unknown to engineering students and many professionals. The overall structure of this new book consists of two parts: transform methods and random processes. Built upon a foundation of applied complex variables, the first part covers advanced transform methods, as well as z-transforms and Hilbert transforms--transforms of particular interest to systems, communication, and electrical engineers. This portion concludes with Green's function, a powerful method of analyzing systems. The second portion presents random processes--processes that more accurately model physical and biological engineering. Of particular interest is the inclusion of stochastic calculus. The author continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of his previous books. As before, theory is presented first, then examples, and then drill problems. Answers are given in the back of the book. This book is all about the future: The purpose of this book is not only to educate the present generation of engineers but also the next. "The main strength is the text is written from an engineering perspective. The majority of my students are engineers. The physical examples are related to problems of interest to the engineering students." --Lea Jenkins, Clemson University

Advanced Engineering Mathematics


Advanced Engineering Mathematics

Author: Merle C. Potter

language: en

Publisher: Springer

Release Date: 2019-06-14


DOWNLOAD





This book is designed to serve as a core text for courses in advanced engineering mathematics required by many engineering departments. The style of presentation is such that the student, with a minimum of assistance, can follow the step-by-step derivations. Liberal use of examples and homework problems aid the student in the study of the topics presented. Ordinary differential equations, including a number of physical applications, are reviewed in Chapter One. The use of series methods are presented in Chapter Two, Subsequent chapters present Laplace transforms, matrix theory and applications, vector analysis, Fourier series and transforms, partial differential equations, numerical methods using finite differences, complex variables, and wavelets. The material is presented so that four or five subjects can be covered in a single course, depending on the topics chosen and the completeness of coverage. Incorporated in this textbook is the use of certain computer software packages. Short tutorials on Maple, demonstrating how problems in engineering mathematics can be solved with a computer algebra system, are included in most sections of the text. Problems have been identified at the end of sections to be solved specifically with Maple, and there are computer laboratory activities, which are more difficult problems designed for Maple. In addition, MATLAB and Excel have been included in the solution of problems in several of the chapters. There is a solutions manual available for those who select the text for their course. This text can be used in two semesters of engineering mathematics. The many helpful features make the text relatively easy to use in the classroom.