Advanced Data Mining Machine Learning And Big Data With Matlab


Download Advanced Data Mining Machine Learning And Big Data With Matlab PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Data Mining Machine Learning And Big Data With Matlab book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Advanced Data Mining, Machine Learning and Big Data With Matlab


Advanced Data Mining, Machine Learning and Big Data With Matlab

Author: H. Mendel

language: en

Publisher:

Release Date: 2017-10-30


DOWNLOAD





The availability of large volumes of data and the use of computer tools has transformed the research and anlysis of data orienting it towards certain specialized techniques included under the name of Data Mining. Data Mining can be defined as a process of discovering new and significant relationships, patterns and trends when examining and processing large amounts of data organized according to Big Data techniques. Data Mining methodologies include SAS Institute's SEMMA methodology and IBM's CRISP-DM methodology. MATLAB has tools to work with the different techniques of Data Mining.On the other hand, Machine learning teaches computers to do what comes naturally to humans: learn from experience. Machine learning algorithms use computational methods to "learn" information directly from data without relying on a predetermined equation as a model. The algorithms adaptively improve their performance as the number of samples available for learning increases. Machine learning uses two types of techniques: supervised learning, which trains a model on known input and output data so that it can predict future outputs, and unsupervised learning, which finds hidden patterns or intrinsic structures in input data. The aim of supervised machine learning is to build a model that makes predictions based on evidence in the presence of uncertainty. A supervised learning algorithm takes a known set of input data and known responses to the data (output) and trains a model to generate reasonable predictions for the response to new data. Supervised learning uses classification and regression techniques to develop predictive models. * Classification techniques predict categorical responses, for example, whether an email is genuine or spam, or whether a tumor is cancerous or benign. Classification models classify input data into categories. Typical applications include medical imaging, image and speech recognition, and credit scoring. * Regression techniques predict continuous responses, for example, changes in temperature or fluctuations in power demand. Typical applications include electricity load forecasting and algorithmic trading. Unsupervised learning finds hidden patterns or intrinsic structures in data. It is used to draw inferences from datasets consisting of input data without labeled responses. Clustering is the most common unsupervised learning technique. It is used for exploratory data analysis to find hidden patterns or groupings in data. Applications for clustering include gene sequence analysis, market research, and object recognition. The techniques of data mining and machine learning may be considered to be closely related. Both concepts are very similar. Supervised machine learning techniques can be considered equivalent to the techniques of predictive modeling of data mining, and unsupervised machine learning techniques can be considered equivalent to classification techniques in data miningBig data analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. A key tools in big data analytics are the neural networks tall arrays and paralell computing. MATLAB Neural Network Toolbox provides algorithms, pretrained models, and apps to create, train, visualize, and simulate both shallow and deep neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. This book develops several chapters that include advanced Data Mining techniques (Neural Networks, Segmentation and advanced Modelization techniques). All chapters are supplemented by examples that clarify the techniques. This book also develops supervised learning and unsupervised learning techniques across examples using MATLAB. As well, this book develops big data tecniques like tall arrays and paralell computing.

Data Science and Big Data Computing


Data Science and Big Data Computing

Author: Zaigham Mahmood

language: en

Publisher: Springer

Release Date: 2016-07-05


DOWNLOAD





This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.

Advanced Data Mining and Applications


Advanced Data Mining and Applications

Author: Gao Cong

language: en

Publisher: Springer

Release Date: 2017-10-30


DOWNLOAD





This book constitutes the refereed proceedings of the 13th International Conference on Advanced Data Mining and Applications, ADMA 2017, held in Singapore in November 2017. The 20 full and 38 short papers presented in this volume were carefully reviewed and selected from 118 submissions. The papers were organized in topical sections named: database and distributed machine learning; recommender system; social network and social media; machine learning; classification and clustering methods; behavior modeling and user profiling; bioinformatics and medical data analysis; spatio-temporal data; natural language processing and text mining; data mining applications; applications; and demos.