Advanced Data Engineering With Aws Building Scalable And Reliable Data Pipelines 2025

Download Advanced Data Engineering With Aws Building Scalable And Reliable Data Pipelines 2025 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Data Engineering With Aws Building Scalable And Reliable Data Pipelines 2025 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advanced Data Engineering with AWS: Building Scalable and Reliable Data Pipelines 2025

Author: AUTHOR :1- GAYATRI TAVVA, AUTHOR :2 - DR PRIYANKA KAUSHIK
language: en
Publisher: YASHITA PRAKASHAN PRIVATE LIMITED
Release Date:
PREFACE The exponential growth of data has redefined the way organizations operate, compete, and innovate. In today’s digital era, businesses are no longer just consumers of data but active participants in building complex, scalable ecosystems that collect, process, store, and derive value from massive data streams. Amazon Web Services (AWS), as the world’s leading cloud platform, offers a robust suite of tools and services that empower enterprises to transform raw data into actionable insights with unprecedented speed and reliability. This book, Advanced Data Engineering on AWS: Building Scalable, Secure, and Intelligent Pipelines, is designed to guide readers through the essential foundations and evolving innovations in data engineering using AWS. It systematically covers the principles and practices needed to architect high-performance data pipelines that can handle modern business demands. The journey begins with establishing the Foundations of Data Engineering in the AWS Ecosystem, helping readers understand how AWS services interplay to create a seamless environment for data management. We then explore Designing Data Pipelines for Scalability and Reliability, focusing on the architectural patterns that ensure resilience and flexibility in an unpredictable data landscape. As data sources become increasingly diverse and dynamic, mastering Data Ingestion Techniques on AWS is critical. We delve into both batch and real-time ingestion strategies, enabling efficient collection of high-velocity data. Coupled with this is Data Storage Optimization using services like S3, Redshift, and Beyond, ensuring that storage solutions align with both performance and cost-efficiency goals. Understanding ETL and ELT on AWS is pivotal for preparing data for downstream analytics and machine learning tasks. Subsequently, Real-Time Data Processing on AWS highlights how to transform and analyze data streams to deliver timely, business-critical insights. Automation becomes key as we address Data Orchestration and Workflow Automation, enabling complex pipelines to run with minimal human intervention. Ensuring trust in data requires rigorous focus on Data Quality and Governance, laying a strong foundation for secure, compliant, and high-fidelity analytics. We further extend this security narrative in Security and Compliance in AWS Data Pipelines, offering a deep dive into encryption, access controls, and regulatory alignment. No modern pipeline is complete without observability; hence, Monitoring, Logging, and Performance Tuning explores techniques to gain actionable insights into pipeline behavior, prevent failures, and optimize operations proactively. In an increasingly globalized world, Advanced Architectures: Multi-Region and Hybrid Pipelines prepares readers for designing architectures that span geographic—es and cloud environments, ensuring data availability and fault tolerance. Finally, we look ahead to Future Trends: AI/ML-Driven Data Engineering on AWS, where artificial intelligence automates data engineering tasks, adaptive pipelines become reality, and next-generation solutions redefine how businesses leverage data at scale. This book aims to serve data engineers, architects, cloud practitioners, and technical leaders who seek to not only build scalable AWS-based systems but also future-proof their architectures in an evolving technology landscape. Through a blend of foundational principles, hands-on techniques, best practices, and forward-looking insights, this book is your comprehensive guide to mastering advanced data engineering on AWS. We invite you to embark on this journey to build the data systems that will power the intelligent enterprises of tomorrow. Authors Gayatri Tavva Dr Priyanka Kaushik
Advanced Data Engineering with AWS: Building Scalable and Reliable Data Pipelines 2025

Author: AUTHOR :1- GAYATRI TAVVA, AUTHOR :2 - DR PRIYANKA KAUSHIK
language: en
Publisher: YASHITA PRAKASHAN PRIVATE LIMITED
Release Date:
PREFACE The exponential growth of data has redefined the way organizations operate, compete, and innovate. In today’s digital era, businesses are no longer just consumers of data but active participants in building complex, scalable ecosystems that collect, process, store, and derive value from massive data streams. Amazon Web Services (AWS), as the world’s leading cloud platform, offers a robust suite of tools and services that empower enterprises to transform raw data into actionable insights with unprecedented speed and reliability. This book, Advanced Data Engineering on AWS: Building Scalable, Secure, and Intelligent Pipelines, is designed to guide readers through the essential foundations and evolving innovations in data engineering using AWS. It systematically covers the principles and practices needed to architect high-performance data pipelines that can handle modern business demands. The journey begins with establishing the Foundations of Data Engineering in the AWS Ecosystem, helping readers understand how AWS services interplay to create a seamless environment for data management. We then explore Designing Data Pipelines for Scalability and Reliability, focusing on the architectural patterns that ensure resilience and flexibility in an unpredictable data landscape. As data sources become increasingly diverse and dynamic, mastering Data Ingestion Techniques on AWS is critical. We delve into both batch and real-time ingestion strategies, enabling efficient collection of high-velocity data. Coupled with this is Data Storage Optimization using services like S3, Redshift, and Beyond, ensuring that storage solutions align with both performance and cost-efficiency goals. Understanding ETL and ELT on AWS is pivotal for preparing data for downstream analytics and machine learning tasks. Subsequently, Real-Time Data Processing on AWS highlights how to transform and analyze data streams to deliver timely, business-critical insights. Automation becomes key as we address Data Orchestration and Workflow Automation, enabling complex pipelines to run with minimal human intervention. Ensuring trust in data requires rigorous focus on Data Quality and Governance, laying a strong foundation for secure, compliant, and high-fidelity analytics. We further extend this security narrative in Security and Compliance in AWS Data Pipelines, offering a deep dive into encryption, access controls, and regulatory alignment. No modern pipeline is complete without observability; hence, Monitoring, Logging, and Performance Tuning explores techniques to gain actionable insights into pipeline behavior, prevent failures, and optimize operations proactively. In an increasingly globalized world, Advanced Architectures: Multi-Region and Hybrid Pipelines prepares readers for designing architectures that span geographic—es and cloud environments, ensuring data availability and fault tolerance. Finally, we look ahead to Future Trends: AI/ML-Driven Data Engineering on AWS, where artificial intelligence automates data engineering tasks, adaptive pipelines become reality, and next-generation solutions redefine how businesses leverage data at scale. This book aims to serve data engineers, architects, cloud practitioners, and technical leaders who seek to not only build scalable AWS-based systems but also future-proof their architectures in an evolving technology landscape. Through a blend of foundational principles, hands-on techniques, best practices, and forward-looking insights, this book is your comprehensive guide to mastering advanced data engineering on AWS. We invite you to embark on this journey to build the data systems that will power the intelligent enterprises of tomorrow. Authors Gayatri Tavva Dr Priyanka Kaushik
Cloud-First Data Engineering: Architecting Scalable Pipelines and Analytics with AWS 2025

Author: Author:1- PEEYUSH PATEL Author:2 -DR. MANMOHAN SHARMA
language: en
Publisher: YASHITA PRAKASHAN PRIVATE LIMITED
Release Date:
Author:1- PEEYUSH PATEL Author:2 -DR. MANMOHAN SHARMA ISBN - 978-93-6788-817-9 Preface In today’s digital economy, organizations generate more data in a single day than many legacy systems could process in years. The shift to cloud-first architectures has transformed how we collect, store, and analyze information—enabling businesses to respond faster to market changes, scale without upfront hardware investments, and foster innovation across teams. This book, Cloud-First Data Engineering: Architecting Scalable Pipelines and Analytics with AWS, is written for data engineers, architects, and technical leaders who seek to design robust, high-performing data platforms using Amazon Web Services. Over the past decade, AWS has introduced a rich portfolio of data services—ranging from serverless ETL (AWS Glue) and streaming solutions (Kinesis, MSK) to petabyte-scale analytics (Redshift, Athena) and machine learning integrations (SageMaker). Yet, with such breadth comes complexity: selecting the right components, designing for cost efficiency, maintaining security and compliance, and ensuring operational excellence are constant challenges. This book distills best practices, architectural patterns, and real-world examples into a cohesive roadmap. You will learn how to build end-to-end pipelines that evolve with your data volume, implement modern data Lakehouse strategies, enable real-time insights, and incorporate governance at every layer. Chapters progress from foundational concepts—such as cloud-first paradigms and core AWS data services—to advanced topics like Data Mesh, serverless Lakehouse’s, generative AI for data quality, and emerging roles in data organization. Each section demystifies the trade-offs, illustrates implementation steps, and highlights pitfalls to avoid. Whether you are migrating legacy workloads, optimizing existing pipelines, or pioneering new analytics capabilities, this book serves as both a practical guide and strategic playbook to navigate the ever-changing landscape of cloud data engineering on AWS. Authors