Advanced Control Methodologies For Power Converter Systems

Download Advanced Control Methodologies For Power Converter Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Control Methodologies For Power Converter Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advanced Control Methodologies For Power Converter Systems

This book aims to present some advanced control methodologies for power converters. Power electronic converters have become indispensable devices for plenty of industrial applications over the last decades. Composed by controllable power switches, they can be controlled by effective strategies to achieve desirable transient response and steady-state performance, to ensure the stability, reliability and safety of the system. The most popular control strategy of power converters is the linear proportional–integral–derivative series control which is adopted as industry standard. However, when there exist parameter changes, nonlinearities and load disturbances in the system, the performance of the controller will be significantly degraded. To overcome this problem, many advanced control methodologies and techniques have been developed to improve the converter performance. This book presents the research work on some advanced control methodologies for several types of power converters, including three-phase two-level AC/DC power converter, three-phase NPC AC/DC power converter, and DC/DC buck converter. The effectiveness and advantage of the proposed control strategies are verified via simulations and experiments. The content of this book can be divided into two parts. The first part focuses on disturbance observer-based control methods for power converters under investigation. The second part investigates intelligent control methods. These methodologies provide a framework for controller design, observer design, stability and performance analysis for the considered power converter systems.
Advanced Control of Electrical Drives and Power Electronic Converters

This contributed volume is written by key specialists working in multidisciplinary fields in electrical engineering, linking control theory, power electronics, artificial neural networks, embedded controllers and signal processing. The authors of each chapter report the state of the art of the various topics addressed and present results of their own research, laboratory experiments and successful applications. The presented solutions concentrate on three main areas of interest: · motion control in complex electromechanical systems, including sensorless control; · fault diagnosis and fault tolerant control of electric drives; · new control algorithms for power electronics converters. The chapters and the complete book possess strong monograph attributes. Important practical and theoretical problems are deeply and accurately presented on the background of an exhaustive state-of the art review. Many results are completely new and were never published before. Well-known control methods like field oriented control (FOC) or direct torque control (DTC) are referred as a starting point for modifications or are used for comparison. Among numerous control theories used to solve particular problems are: nonlinear control, robust control, adaptive control, Lyapunov techniques, observer design, model predictive control, neural control, sliding mode control, signal filtration and processing, fault diagnosis, and fault tolerant control.
Sliding Mode Control of Switching Power Converters

Sliding Mode Control of Switching Power Converters: Techniques and Implementation is perhaps the first in-depth account of how sliding mode controllers can be practically engineered to optimize control of power converters. A complete understanding of this process is timely and necessary, as the electronics industry moves toward the use of renewable energy sources and widely varying loads that can be adequately supported only by power converters using nonlinear controllers. Of the various advanced control methods used to handle the complex requirements of power conversion systems, sliding mode control (SMC) has been most widely investigated and proved to be a more feasible alternative than fuzzy and adaptive control for existing and future power converters. Bridging the gap between power electronics and control theory, this book employs a top-down instructional approach to discuss traditional and modern SMC techniques. Covering everything from equations to analog implantation, it: Provides a comprehensive general overview of SMC principles and methods Offers advanced readers a systematic exposition of the mathematical machineries and design principles relevant to construction of SMC, then introduces newer approaches Demonstrates the practical implementation and supporting design rules of SMC, based on analog circuits Promotes an appreciation of general nonlinear control by presenting it from a practical perspective and using familiar engineering terminology With specialized coverage of modeling and implementation that is useful to students and professionals in electrical and electronic engineering, this book clarifies SMC principles and their application to power converters. Making the material equally accessible to all readers, whether their background is in analog circuit design, power electronics, or control engineering, the authors—experienced researchers in their own right—elegantly and practically relate theory, application, and mathematical concepts and models to corresponding industrial targets.