Advanced Control Design With Application To Electromechanical Systems


Download Advanced Control Design With Application To Electromechanical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Control Design With Application To Electromechanical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Advanced Control Design with Application to Electromechanical Systems


Advanced Control Design with Application to Electromechanical Systems

Author: Magdi S. Mahmoud

language: en

Publisher: Butterworth-Heinemann

Release Date: 2018-04-12


DOWNLOAD





Advanced Control Design with Application to Electromechanical Systems represents the continuing effort in the pursuit of analytic theory and rigorous design for robust control methods. The book provides an overview of the feedback control systems and their associated definitions, with discussions on finite dimension vector spaces, mappings and convex analysis. In addition, a comprehensive treatment of continuous control system design is presented, along with an introduction to control design topics pertaining to discrete-time systems. Other sections introduces linear H1 and H2 theory, dissipativity analysis and synthesis, and a wide spectrum of models pertaining to electromechanical systems. Finally, the book examines the theory and mathematical analysis of multiagent systems. Researchers on robust control theory and electromechanical systems and graduate students working on robust control will benefit greatly from this book. - Introduces a coherent and unified framework for studying robust control theory - Provides the control-theoretic background required to read and contribute to the research literature - Presents the main ideas and demonstrations of the major results of robust control theory - Includes MATLAB codes to implement during research

Advanced Control of Electrical Drives and Power Electronic Converters


Advanced Control of Electrical Drives and Power Electronic Converters

Author: Jacek Kabziński

language: en

Publisher: Springer

Release Date: 2016-09-30


DOWNLOAD





This contributed volume is written by key specialists working in multidisciplinary fields in electrical engineering, linking control theory, power electronics, artificial neural networks, embedded controllers and signal processing. The authors of each chapter report the state of the art of the various topics addressed and present results of their own research, laboratory experiments and successful applications. The presented solutions concentrate on three main areas of interest: · motion control in complex electromechanical systems, including sensorless control; · fault diagnosis and fault tolerant control of electric drives; · new control algorithms for power electronics converters. The chapters and the complete book possess strong monograph attributes. Important practical and theoretical problems are deeply and accurately presented on the background of an exhaustive state-of the art review. Many results are completely new and were never published before. Well-known control methods like field oriented control (FOC) or direct torque control (DTC) are referred as a starting point for modifications or are used for comparison. Among numerous control theories used to solve particular problems are: nonlinear control, robust control, adaptive control, Lyapunov techniques, observer design, model predictive control, neural control, sliding mode control, signal filtration and processing, fault diagnosis, and fault tolerant control.

Electromechanical Systems, Electric Machines, and Applied Mechatronics


Electromechanical Systems, Electric Machines, and Applied Mechatronics

Author: Sergey Edward Lyshevski

language: en

Publisher: CRC Press

Release Date: 1999-10-27


DOWNLOAD





Recent trends in engineering show increased emphasis on integrated analysis, design, and control of advanced electromechanical systems, and their scope continues to expand. Mechatronics-a breakthrough concept-has evolved to attack, integrate, and solve a variety of emerging problems in engineering, and there appears to be no end to its application. It has become essential for all engineers to understand its basic theoretical standpoints and practical applications. Electromechanical Systems, Electric Machines, and Applied Mechatronics presents a unique combination of traditional engineering topics and the latest technologies, integrated to stimulate new advances in the analysis and design of state-of-the-art electromechanical systems. With a focus on numerical and analytical methods, the author develops the rigorous theory of electromechanical systems and helps build problem-solving skills. He also stresses simulation as a critical aspect of developing and prototyping advanced systems. He uses the MATLABTM environment for his examples and includes a MATLABTM diskette with the book, thus providing a solid introduction to this standard engineering tool. Readable, interesting, and accessible, Electromechanical Systems, Electric Machines, and Applied Mechatronics develops a thorough understanding of the integrated perspectives in the design and analysis of electromechanical systems. It covers the basic concepts in mechatronics, and with numerous worked examples, prepares the reader to use the results in engineering practice. Readers who master this book will know what they are doing, why they are doing it, and how to do it.