Advanced Basics Of Geometric Measure Theory

Download Advanced Basics Of Geometric Measure Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Basics Of Geometric Measure Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advanced Basics of Geometric Measure Theory

This book is based on lecture notes for a short course for Masters level or senior undergraduate students. It may also serve as easy (and hopefully pleasant) reading for researchers in a different field of Mathematics. The main purpose of the book is to look closely at some results that are basic for modern Analysis and which fascinated the author when she was a student, and to show how they constitute a foundation for the branch of Analysis known as Geometric Measure Theory. The secondary aim of the book is to give a straightforward but reasonably complete introduction to the definition of Hausdorff measure and Hausdorff dimension and to illustrate how non-trivial they can be. The course has no ambition to replace a serious course on Geometric Measure Theory, but rather to encourage the student to take such a course. The author comes from Russia. For the past 17 years she has worked at Chalmers University of Technology in Gothenburg, Sweden. She also had visiting positions in Canada, France, and Poland.
Geometric Measure Theory

Geometric Measure Theory: A Beginner's Guide provides information pertinent to the development of geometric measure theory. This book presents a few fundamental arguments and a superficial discussion of the regularity theory. Organized into 12 chapters, this book begins with an overview of the purpose and fundamental concepts of geometric measure theory. This text then provides the measure-theoretic foundation, including the definition of Hausdorff measure and covering theory. Other chapters consider the m-dimensional surfaces of geometric measure theory called rectifiable sets and introduce the two basic tools of the regularity theory of area-minimizing surfaces. This book discusses as well the fundamental theorem of geometric measure theory, which guarantees solutions to a wide class of variational problems in general dimensions. The final chapter deals with the basic methods of geometry and analysis in a generality that embraces manifold applications. This book is a valuable resource for graduate students, mathematicians, and research workers.
Geometric Measure Theory

From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst." Bulletin of the London Mathematical Society