Additive Manufacturing Of High Performance Metals And Alloys Modeling And Optimization

Download Additive Manufacturing Of High Performance Metals And Alloys Modeling And Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Additive Manufacturing Of High Performance Metals And Alloys Modeling And Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Additive Manufacturing of High-performance Metals and Alloys - Modeling and Optimization

Freedoms in material choice based on combinatorial design, different directions of process optimization, and computational tools are a significant advantage of additive manufacturing technology. The combination of additive and information technologies enables rapid prototyping and rapid manufacturing models on the design stage, thereby significantly accelerating the design cycle in mechanical engineering. Modern and high-demand powder bed fusion and directed energy deposition methods allow obtaining functional complex shapes and functionally graded structures. Until now, the experimental parametric analysis remains as the main method during AM optimization. Therefore, an additional goal of this book is to introduce readers to new modeling and material's optimization approaches in the rapidly changing world of additive manufacturing of high-performance metals and alloys.
Additive Manufacturing of High-performance Metals and Alloys

Author: Igor Shishkovsky
language: en
Publisher: BoD – Books on Demand
Release Date: 2018-07-11
Freedoms in material choice based on combinatorial design, different directions of process optimization, and computational tools are a significant advantage of additive manufacturing technology. The combination of additive and information technologies enables rapid prototyping and rapid manufacturing models on the design stage, thereby significantly accelerating the design cycle in mechanical engineering. Modern and high-demand powder bed fusion and directed energy deposition methods allow obtaining functional complex shapes and functionally graded structures. Until now, the experimental parametric analysis remains as the main method during AM optimization. Therefore, an additional goal of this book is to introduce readers to new modeling and material's optimization approaches in the rapidly changing world of additive manufacturing of high-performance metals and alloys.
Laser Additive Manufacturing of High-Performance Materials

This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering and mechanical engineering. This is a book for researchers, students, practicing engineers and manufacturing industry professionals interested in laser additive manufacturing and laser materials processing. Dongdong Gu is a Professor at College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), PR China.