Adaptive Learning And Robust Model Predictive Control For Uncertain Dynamic Systems

Download Adaptive Learning And Robust Model Predictive Control For Uncertain Dynamic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Adaptive Learning And Robust Model Predictive Control For Uncertain Dynamic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Adaptive Learning and Robust Model Predictive Control for Uncertain Dynamic Systems

Recent decades have witnessed the phenomenal success of model predictive control (MPC) in a wide spectrum of domains, such as process industries, intelligent transportation, automotive applications, power systems, cyber security, and robotics. For constrained dynamic systems subject to uncertainties, robust MPC is attractive due to its capability of effectively dealing with various types of uncertainties while ensuring optimal performance concerning prescribed performance indices. But most robust MPC schemes require prior knowledge on the uncertainty, which may not be satisfied in practical applications. Therefore, it is desired to design robust MPC algorithms that proactively update the uncertainty description based on the history of inputs and measurements, motivating the development of adaptive MPC. This dissertation investigates four problems in robust and adaptive MPC from theoretical and application points of view. New algorithms are developed to address these issues efficiently with theoretical guarantees of closed-loop performance. Chapter 1 provides an overview of robust MPC, adaptive MPC, and self-triggered MPC, where the recent advances in these fields are reviewed. Chapter 2 presents notations and preliminary results that are used in this dissertation. Chapter 3 investigates adaptive MPC for a class of constrained linear systems with unknown model parameters. Based on the recursive least-squares (RLS) technique, we design an online set-membership system identification scheme to estimate unknown parameters. Then a novel integration of the proposed estimator and homothetic tube MPC is developed to improve closed-loop performance and reduce conservatism. In Chapter 4, a self-triggered adaptive MPC method is proposed for constrained discrete-time nonlinear systems subject to parametric uncertainties and additive disturbances. Based on the zonotope-based reachable set computation, a set-membership parameter estimator is developed to refine a set-valued description of the time-varying parametric uncertainty under the self-triggered scheduling. We leverage this estimation scheme to design a novel self-triggered adaptive MPC approach for uncertain nonlinear systems. The resultant adaptive MPC method can reduce the average sampling frequency further while preserving comparable closed-loop performance compared with the periodic adaptive MPC method. Chapter 5 proposes a robust nonlinear MPC scheme for the visual servoing of quadrotors subject to external disturbances. By using the virtual camera approach, an image-based visual servoing (IBVS) system model is established with decoupled image kinematics and quadrotor dynamics. A robust MPC scheme is developed to maintain the visual target stay within the field of view of the camera, where the tightened state constraints are constructed based on the Lipschitz condition to tackle external disturbances. In Chapter 6, an adaptive MPC scheme is proposed for the trajectory tracking of perturbed autonomous ground vehicles (AGVs) subject to input constraints. We develop an RLS-based set-membership based parameter to improve the prediction accuracy. In the proposed adaptive MPC scheme, a robustness constraint is designed to handle parametric and additive uncertainties. The proposed constraint has the offline computed shape and online updated shrinkage rate, leading to further reduced conservatism and slightly increased computational complexity compared with the robust MPC methods. Chapter 7 shows some conclusion remarks and future research directions.
Learning-based Model Predictive Control with closed-loop guarantees

Author: Raffaele Soloperto
language: en
Publisher: Logos Verlag Berlin GmbH
Release Date: 2023-11-13
The performance of model predictive control (MPC) largely depends on the accuracy of the prediction model and of the constraints the system is subject to. However, obtaining an accurate knowledge of these elements might be expensive in terms of money and resources, if at all possible. In this thesis, we develop novel learning-based MPC frameworks that actively incentivize learning of the underlying system dynamics and of the constraints, while ensuring recursive feasibility, constraint satisfaction, and performance bounds for the closed-loop. In the first part, we focus on the case of inaccurate models, and analyze learning-based MPC schemes that include, in addition to the primary cost, a learning cost that aims at generating informative data by inducing excitation in the system. In particular, we first propose a nonlinear MPC framework that ensures desired performance bounds for the resulting closed-loop, and then we focus on linear systems subject to uncertain parameters and noisy output measurements. In order to ensure that the desired learning phase occurs in closed-loop operations, we then propose an MPC framework that is able to guarantee closed-loop learning of the controlled system. In the last part of the thesis, we investigate the scenario where the system is known but evolves in a partially unknown environment. In such a setup, we focus on a learning-based MPC scheme that incentivizes safe exploration if and only if this might yield to a performance improvement.
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016

This book gathers the proceedings of the 2nd International Conference on Advanced Intelligent Systems and Informatics (AISI2016), which took place in Cairo, Egypt during October 24–26, 2016. This international interdisciplinary conference, which highlighted essential research and developments in the field of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE) and sponsored by the IEEE Computational Intelligence Society (Egypt chapter) and the IEEE Robotics and Automation Society (Egypt Chapter). The book’s content is divided into four main sections: Intelligent Language Processing, Intelligent Systems, Intelligent Robotics Systems, and Informatics.