Adaptive Finite Element Methods For Optimization In Partial Differential Equations

Download Adaptive Finite Element Methods For Optimization In Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Adaptive Finite Element Methods For Optimization In Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Automated Solution of Differential Equations by the Finite Element Method

Author: Anders Logg
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-02-24
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Adaptive Finite Element Methods for Optimization in Partial Differential Equations

A new approach to error control and mesh adaptivity is described for the discretization of optimal control problems governed by (elliptic) partial differential equations. The Lagrangian formalism yields the first-order necessary optimality condition in form of an indefinite boundary value problem which is approximated by an adaptive Galerkin finite element method. The mesh design in the resulting reduced models is controlled by residual-based a posteriori error estimates. These are derived by duality arguments employing the cost functional of the optimization problem for controlling the discretization error. In this case, the computed state and co-state variables can be used as sensitivity factors multiplying the local cell-residuals in the error estimators. This results in a generic and efficient algorithm for mesh adaptation within the optimization process. Applications of the developed method are boundary control problem models governed by Ginzburg-Landau equations (superconductivity in semi-conductors), by Navier-Stokes equations, and by the Boussinesq viscosity model (flow with temperature transport for zero gravitation). Computations with more than 2 million unknowns were performed.