Academic Press Library In Signal Processing

Download Academic Press Library In Signal Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Academic Press Library In Signal Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Academic Press Library in Signal Processing

This third volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in array and statistical signal processing. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in array and statistical signal processing - Presents core principles and shows their application - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic
Bioelectrical Signal Processing in Cardiac and Neurological Applications

The analysis of bioelectrical signals continues to receive wide attention in research as well as commercially because novel signal processing techniques have helped to uncover valuable information for improved diagnosis and therapy. This book takes a unique problem-driven approach to biomedical signal processing by considering a wide range of problems in cardiac and neurological applications–the two "heavyweight" areas of biomedical signal processing. The interdisciplinary nature of the topic is reflected in how the text interweaves physiological issues with related methodological considerations. Bioelectrical Signal Processing is suitable for a final year undergraduate or graduate course as well as for use as an authoritative reference for practicing engineers, physicians, and researchers. - A problem-driven, interdisciplinary presentation of biomedical signal processing - Focus on methods for processing of bioelectrical signals (ECG, EEG, evoked potentials, EMG) - Covers both classical and recent signal processing techniques - Emphasis on model-based statistical signal processing - Comprehensive exercises and illustrations - Extensive bibliography
A Wavelet Tour of Signal Processing

This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics