Abstract Cauchy Problems


Download Abstract Cauchy Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Abstract Cauchy Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Theory and Applications of Abstract Semilinear Cauchy Problems


Theory and Applications of Abstract Semilinear Cauchy Problems

Author: Pierre Magal

language: en

Publisher: Springer

Release Date: 2018-11-21


DOWNLOAD





Several types of differential equations, such as functional differential equation, age-structured models, transport equations, reaction-diffusion equations, and partial differential equations with delay, can be formulated as abstract Cauchy problems with non-dense domain. This monograph provides a self-contained and comprehensive presentation of the fundamental theory of non-densely defined semilinear Cauchy problems and their applications. Starting from the classical Hille-Yosida theorem, semigroup method, and spectral theory, this monograph introduces the abstract Cauchy problems with non-dense domain, integrated semigroups, the existence of integrated solutions, positivity of solutions, Lipschitz perturbation, differentiability of solutions with respect to the state variable, and time differentiability of solutions. Combining the functional analysis method and bifurcation approach in dynamical systems, then the nonlinear dynamics such as the stability of equilibria, center manifold theory, Hopf bifurcation, and normal form theory are established for abstract Cauchy problems with non-dense domain. Finally applications to functional differential equations, age-structured models, and parabolic equations are presented. This monograph will be very valuable for graduate students and researchers in the fields of abstract Cauchy problems, infinite dimensional dynamical systems, and their applications in biological, chemical, medical, and physical problems.

The Cauchy Problem for Higher Order Abstract Differential Equations


The Cauchy Problem for Higher Order Abstract Differential Equations

Author: Ti-Jun Xiao

language: en

Publisher: Springer Science & Business Media

Release Date: 1998-11-18


DOWNLOAD





This monograph is the first systematic exposition of the theory of the Cauchy problem for higher order abstract linear differential equations, which covers all the main aspects of the developed theory. The main results are complete with detailed proofs and established recently, containing the corresponding theorems for first and incomplete second order cases and therefore for operator semigroups and cosine functions. They will find applications in many fields. The special power of treating the higher order problems directly is demonstrated, as well as that of the vector-valued Laplace transforms in dealing with operator differential equations and operator families. The reader is expected to have a knowledge of complex and functional analysis.

Abstract Cauchy Problems


Abstract Cauchy Problems

Author: Irina V. Melnikova

language: en

Publisher: Chapman and Hall/CRC

Release Date: 2001-03-27


DOWNLOAD





Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularization methods. Semigroup and distribution methods restore well-posedness, in a modern weak sense. Regularization methods provide approximate solutions to ill-posed problems. Although these approaches were extensively developed over the last decades by many researchers, nowhere could one find a comprehensive treatment of all three approaches. Abstract Cauchy Problems: Three Approaches provides an innovative, self-contained account of these methods and, furthermore, demonstrates and studies some of the profound connections between them. The authors discuss the application of different methods not only to the Cauchy problem that is not well-posed in the classical sense, but also to important generalizations: the Cauchy problem for inclusion and the Cauchy problem for second order equations. Accessible to nonspecialists and beginning graduate students, this volume brings together many different ideas to serve as a reference on modern methods for abstract linear evolution equations.