Absorption Based Post Combustion Capture Of Carbon Dioxide

Download Absorption Based Post Combustion Capture Of Carbon Dioxide PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Absorption Based Post Combustion Capture Of Carbon Dioxide book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Absorption-Based Post-Combustion Capture of Carbon Dioxide

Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique. Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground. - Provides researchers in academia and industry with an authoritative overview of the amine-based methods for carbon dioxide capture from flue gases and related processes - Editors and contributors are well known experts in the field - Presents the first book on this specific topic
Advances in Synthesis Gas: Methods, Technologies and Applications

Advances in Synthesis Gas: Methods, Technologies and Applications: Syngas Purification and Separation considers different common and novel processes for the purification of produced syngas, such as absorption, adsorption, membrane, cryogenic distillation and particulate separation technologies in addition to thermal and oxidative processes for tar removal. The role of various catalysts or materials in absorption, adsorption and membrane processes are discussed in separate chapters to address each in more detail. - Introduces various adsorption and absorption techniques for purifying syngas - Describes syngas purification by various membranes - Discusses novel technologies for syngas purification
Carbon Capture Technologies for Gas-Turbine-Based Power Plants

Author: Hamidreza Gohari Darabkhani
language: en
Publisher: Elsevier
Release Date: 2022-09-24
Carbon Capture Technologies for Gas-Turbine-Based Power Plants explores current progress in one of the most capable technologies for carbon capture in gas-turbine-based power plants. It identifies the primary benefits and shortcomings of oxy-fuel combustion CO2 capture technology compared to other capture technologies such as pre-combustion and post-combustion capture. This book examines over 20 different oxy-combustion turbine (oxyturbine) power cycles by providing their main operational parameters, thermodynamics and process modelling, energy and exergy analysis and performance evaluation. The conventional natural gas combined cycle (NGCC) power plant with post-combustion capture used as the base-case scenario. The design procedure and operational characteristics of a radial NOx-less oxy-fuel gas turbine combustor are presented with CFD simulation and performance analysis of the heat exchanger network and turbomachinery. Overview of oxygen production and air separation units (ASU) and CO2 compression and purification units (CPU) are also presented and discussed. The most advanced stages of development for the leading oxyturbine power cycles are assessed using techno-economic analysis, sensitivity, risk assessments and levelized cost of energy (LCOE) and analysing technology readiness level (TRL) and development stages. The book concludes with a road map for the development of future gas turbine-based power plants with full carbon capture capabilities using the experiences of the recently demonstrated cycles. - Analyzes more than 20 models of oxyturbine power cycles, identifying the main parameters regarding their operation, process and performance simulations and energy and exergy analysis - Provides techno-economic analysis, TRL, sensitivity and risk analysis, LCOE and stages of development for oxy-combustion turbine power plants - Presents the design procedure and CFD simulation of a radial NOx-less oxy-fuel gas turbine combustor exploring its influence on heat exchanger network and turbomachinery - Supports practitioners, policymakers and energy industry managers seeking pathways to convert coal-fired power plants to gas-fired plants with zero CO2 emission