A Variational Approach To Structural Analysis

Download A Variational Approach To Structural Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Variational Approach To Structural Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Variational Approach to Structural Analysis

Author: David V. Wallerstein
language: en
Publisher: John Wiley & Sons
Release Date: 2002-10-31
An insightful examination of the numerical methods used to develop finite element methods A Variational Approach to Structural Analysis provides readers with the underpinnings of the finite element method (FEM) while highlighting the power and pitfalls of virtual methods. In an easy-to-follow, logical format, this book gives complete coverage of the principle of virtual work, complementary virtual work and energy methods, and static and dynamic stability concepts. The first two chapters prepare the reader with preliminary material, introducing in detail the variational approach used in the book as well as reviewing the equilibrium and compatibility equations of mechanics. The next chapter, on virtual work, teaches how to use kinematical formulations for the determination of the required strain relationships for straight, curved, and thin walled beams. The chapters on complementary virtual work and energy methods are problem-solving chapters that incorporate Castigliano's first theorem, the Engesser-Crotti theorem, and the Galerkin method. In the final chapter, the reader is introduced to various geometric measures of strain and revisits straight, curved, and thin walled beams by examining them in a deformed geometry. Based on nearly two decades of work on the development of the world's most used FEM code, A Variational Approach to Structural Analysis has been designed as a self-contained, single-source reference for mechanical, aerospace, and civil engineering professionals. The book's straightforward style also provides accessible instruction for graduate students in aeronautical, civil, mechanical, and engineering mechanics courses.
Solid Mechanics

Author: Clive L. Dym
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-05
Solid Mechanics: A Variational Approach, Augmented Edition presents a lucid and thoroughly developed approach to solid mechanics for students engaged in the study of elastic structures not seen in other texts currently on the market. This work offers a clear and carefully prepared exposition of variational techniques as they are applied to solid mechanics. Unlike other books in this field, Dym and Shames treat all the necessary theory needed for the study of solid mechanics and include extensive applications. Of particular note is the variational approach used in developing consistent structural theories and in obtaining exact and approximate solutions for many problems. Based on both semester and year-long courses taught to undergraduate seniors and graduate students, this text is geared for programs in aeronautical, civil, and mechanical engineering, and in engineering science. The authors’ objective is two-fold: first, to introduce the student to the theory of structures (one- and two-dimensional) as developed from the three-dimensional theory of elasticity; and second, to introduce the student to the strength and utility of variational principles and methods, including briefly making the connection to finite element methods. A complete set of homework problems is included.
Mechanics of Structural Elements

Author: Vladimir Slivker
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-12-18
The book systematically presents variational principles and methods of analysis for applied elasticity and structural mechanics. The variational approach is used consistently for both, constructing numerical procedures and deriving basic governing equations of applied mechanics of solids; it is the derivation of equations where this approach is most powerful and best grounded by mathematics.