A Theory Of Learning And Generalization

Download A Theory Of Learning And Generalization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Theory Of Learning And Generalization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Theory of Learning and Generalization

A Theory of Learning and Generalization provides a formal mathematical theory for addressing intuitive questions of the type: How does a machine learn a new concept on the basis of examples? How can a neural network, after sufficient training, correctly predict the output of a previously unseen input? How much training is required to achieve a specified level of accuracy in the prediction? How can one "identify" the dynamical behaviour of a nonlinear control system by observing its input-output behaviour over a finite interval of time? This is the first book to treat the problem of machine learning in conjunction with the theory of empirical processes, the latter being a well-established branch of probability theory. The treatment of both topics side by side leads to new insights, as well as new results in both topics. An extensive references section and open problems will help readers to develop their own work in the field.
Learning and Generalisation

Author: Mathukumalli Vidyasagar
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-14
Learning and Generalization provides a formal mathematical theory addressing intuitive questions of the type: • How does a machine learn a concept on the basis of examples? • How can a neural network, after training, correctly predict the outcome of a previously unseen input? • How much training is required to achieve a given level of accuracy in the prediction? • How can one identify the dynamical behaviour of a nonlinear control system by observing its input-output behaviour over a finite time? The second edition covers new areas including: • support vector machines; • fat-shattering dimensions and applications to neural network learning; • learning with dependent samples generated by a beta-mixing process; • connections between system identification and learning theory; • probabilistic solution of 'intractable problems' in robust control and matrix theory using randomized algorithms. It also contains solutions to some of the open problems posed in the first edition, while adding new open problems.
Generalization of Knowledge

This volume takes a multidisciplinary perspective on generalization of knowledge from several fields associated with Cognitive Science, including Cognitive Neuroscience, Computer Science, Education, Linguistics, Developmental Science, and Speech, Language and Hearing Sciences. The aim is to derive general principles from triangulation across different disciplines and approaches.