A Sharp Interface Method Using Enriched Finite Elements For Elliptic Interface Problems

Download A Sharp Interface Method Using Enriched Finite Elements For Elliptic Interface Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Sharp Interface Method Using Enriched Finite Elements For Elliptic Interface Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Sharp Interface Method Using Enriched Finite Elements for Elliptic Interface Problems

We present an immersed boundary method for the solution of elliptic interface problems with discontinuous coefficients which provides a second-order approximation of the solution. The proposed method can be categorised as an extended or enriched finite element method. In contrast to other extended FEM approaches, the new shape functions get projected in order to satisfy the Kronecker-delta property with respect to the interface. The resulting combination of projection and restriction was already derived in Höllbacher and Wittum (TBA, 2019a) for application to particulate flows. The crucial benefits are the preservation of the symmetry and positive definiteness of the continuous bilinear operator. Besides, no additional stabilisation terms are necessary. Furthermore, since our enrichment can be interpreted as adaptive mesh refinement, the standard integration schemes can be applied on the cut elements. Finally, small cut elements do not impair the condition of the scheme and we propose a simple procedure to ensure good conditioning independent of the location of the interface. The stability and convergence of the solution will be proven and the numerical tests demonstrate optimal order of convergence.
Correction To: A Sharp Interface Method Using Enriched Finite Elements for Elliptic Interface Problems

Korrektur zu: Höllbacher, S., Wittum, G. Correction to: A sharp interface method using enriched finite elements for elliptic interface problems. Numer. Math. 147, 783 (2021). DOI: 10.1007/s00211-021-01180-0.
Extended Finite Element Method

Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples