A Sequential Introduction To Real Analysis

Download A Sequential Introduction To Real Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Sequential Introduction To Real Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Sequential Introduction To Real Analysis

Author: J Martin Speight
language: en
Publisher: World Scientific Publishing Company
Release Date: 2015-10-29
Real analysis provides the fundamental underpinnings for calculus, arguably the most useful and influential mathematical idea ever invented. It is a core subject in any mathematics degree, and also one which many students find challenging. A Sequential Introduction to Real Analysis gives a fresh take on real analysis by formulating all the underlying concepts in terms of convergence of sequences. The result is a coherent, mathematically rigorous, but conceptually simple development of the standard theory of differential and integral calculus ideally suited to undergraduate students learning real analysis for the first time.This book can be used as the basis of an undergraduate real analysis course, or used as further reading material to give an alternative perspective within a conventional real analysis course.
Introduction to Real Analysis

This classic textbook has been used successfully by instructors and students for nearly three decades. This timely new edition offers minimal yet notable changes while retaining all the elements, presentation, and accessible exposition of previous editions. A list of updates is found in the Preface to this edition. This text is based on the author’s experience in teaching graduate courses and the minimal requirements for successful graduate study. The text is understandable to the typical student enrolled in the course, taking into consideration the variations in abilities, background, and motivation. Chapters one through six have been written to be accessible to the average student, w hile at the same time challenging the more talented student through the exercises. Chapters seven through ten assume the students have achieved some level of expertise in the subject. In these chapters, the theorems, examples, and exercises require greater sophistication and mathematical maturity for full understanding. In addition to the standard topics the text includes topics that are not always included in comparable texts. Chapter 6 contains a section on the Riemann-Stieltjes integral and a proof of Lebesgue’s t heorem providing necessary and sufficient conditions for Riemann integrability. Chapter 7 also includes a section on square summable sequences and a brief introduction to normed linear spaces. C hapter 8 contains a proof of the Weierstrass approximation theorem using the method of aapproximate identities. The inclusion of Fourier series in the text allows the student to gain some exposure to this important subject. The final chapter includes a detailed treatment of Lebesgue measure and the Lebesgue integral, using inner and outer measure. The exercises at the end of each section reinforce the concepts. Notes provide historical comments or discuss additional topics.
An Introduction to Real Analysis

This book provides a compact, but thorough, introduction to the subject of Real Analysis. It is intended for a senior undergraduate and for a beginning graduate one-semester course.