A Review Of Numerical Reservoir Hydrodynamic Modeling

Download A Review Of Numerical Reservoir Hydrodynamic Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Review Of Numerical Reservoir Hydrodynamic Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Review of Numerical Reservoir Hydrodynamic Modeling

Stratification, i.e., density variations in a reservoir, occurs due to temperature variations as a result of surface heat exchange and plays an important role in determining the water quality of a reservoir. This role is determined through the influence of density variations on the movement of water in the reservoir. Therefore, the primary objective of a prediction of stratified flow hydrodynamics in reservoirs is to enable scientists to compute temperature distributions and water transports insofar as they affect various water quality parameters. One objective of the Environmental & Water Quality Operational Study (EWQOS) program of the U.S. Army Corps of Engineers is to provide District and Division offices with a tool for predicting reservoir hydrodynamics over periods of time extending from the initial setup of thermal stratification in the spring through its breakup in the fall. Such a predictive technique will subsequently be used in the prediction of water quality parameters. Both two- and three-dimensional, unsteady, variable density, heat-conducting models have been investigated during the past year. This investigation has centered around an analysis of both the mathematical and numerical bases of individual models as well as their ability to simulate a density underflow.
Hydrodynamics and Transport for Water Quality Modeling

Hydrodynamics and Transport for Water Quality Modeling presents a complete overview of current methods used to describe or predict transport in aquatic systems, with special emphasis on water quality modeling. The book features detailed descriptions of each method, supported by sample applications and case studies drawn from the authors' years of experience in the field. Each chapter examines a variety of modeling approaches, from simple to complex. This unique text/reference offers a wealth of information previously unavailable from a single source. The book begins with an overview of basic principles, and an introduction to the measurement and analysis of flow. The following section focuses on rivers and streams, including model complexity and data requirements, methods for estimating mixing, hydrologic routing methods, and unsteady flow modeling. The third section considers lakes and reservoirs, and discusses stratification and temperature modeling, mixing methods, reservoir routing and water balances, and dynamic modeling using one-, two-, and three-dimensional models. The book concludes with a section on estuaries, containing topics such as origins and classification, tides, mixing methods, tidally averaged estuary models, and dynamic modeling. Over 250 figures support the text. This is a valuable guide for students and practicing modelers who do not have extensive backgrounds in fluid dynamics.