A Quantum Computation Workbook

Download A Quantum Computation Workbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Quantum Computation Workbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Quantum Computation Workbook

Teaching quantum computation and information is notoriously difficult, because it requires covering subjects from various fields of science, organizing these subjects consistently in a unified way despite their tendency to favor their specific languages, and overcoming the subjects’ abstract and theoretical natures, which offer few examples of actual realizations. In this book, we have organized all the subjects required to understand the principles of quantum computation and information processing in a manner suited to physics, mathematics, and engineering courses as early as undergraduate studies.In addition, we provide a supporting package of quantum simulation software from Wolfram Mathematica, specialists in symbolic calculation software. Throughout the book’s main text, demonstrations are provided that use the software package, allowing the students to deepen their understanding of each subject through self-practice. Readers can change the code so as to experiment with their own ideas and contemplate possible applications. The information in this book reflects many years of experience teaching quantum computation and information. The quantum simulation-based demonstrations and the unified organization of the subjects are both time-tested and have received very positive responses from the students who have experienced them.
Quantum Computation and Quantum Information

Author: Michael A. Nielsen
language: en
Publisher: Cambridge University Press
Release Date: 2010-12-09
One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.
Quantum Computing for Everyone

An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.