A Practical Introduction To Beam Physics And Particle Accelerators

Download A Practical Introduction To Beam Physics And Particle Accelerators PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Practical Introduction To Beam Physics And Particle Accelerators book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Practical Introduction to Beam Physics and Particle Accelerators

Author: Santiago Bernal
language: en
Publisher: Morgan & Claypool Publishers
Release Date: 2018-10-26
This book provides a brief exposition of the principles of beam physics and particle accelerators with an emphasis on numerical examples employing readily available computer tools. However, it avoids detailed derivations, instead inviting the reader to use general high-end languages such as Mathcad and Matlab, as well as specialized particle accelerator codes (e.g. MAD, WinAgile, Elegant, and others) to explore the principles presented. This approach allows readers to readily identify relevant design parameters and their scaling. In addition, the computer input files can serve as templates that can be easily adapted to other related situations. The examples and computer exercises comprise basic lenses and deflectors, fringe fields, lattice and beam functions, synchrotron radiation, beam envelope matching, betatron resonances, and transverse and longitudinal emittance and space charge. The last chapter presents examples of two major types of particle accelerators: radio frequency linear accelerators (RF linacs) and storage rings. Lastly, the appendix gives readers a brief description of the computer tools employed and concise instructions for their installation and use in the most popular computer platforms (Windows, Macintosh and Ubuntu Linux). Hyperlinks to websites containing all relevant files are also included. An essential component of the book is its website (actually part of the author's website at the University of Maryland), which contains the files that reproduce results given in the text as well as additional material such as technical notes and movies.
A Practical Introduction to Beam Physics and Particle Accelerators

This book provides a brief exposition of the principles of beam physics and particle accelerators with an emphasis on numerical examples employing readily available computer tools. The new edition covers, as the first two editions, basic accelerator lenses and deflectors, lattice and beam functions, synchrotron radiation, beam envelope matching, betatron resonances with and without space charge, transverse and longitudinal emittance and space charge. Two new chapters cover special lattice configurations known as coupled optics, and small machines employed for physics research in scaled experiments, which cannot be easily tested in large accelerators. In addition, the general theory of accelerator magnets is presented in a new appendix. The key audiences for this book include physics and engineering graduates and senior undergraduate students, instructors in accelerator/beam physics and particle accelerator science and engineering professionals.
A Practical Introduction to Beam Physics and Particle Accelerators, 2nd Edition

The second edition of this book continues to provide a brief exposition of the principles of beam physics and particle accelerators with emphasis on numerical examples. It includes revisions and additions to every section with new material, figures, improved notation, and new or enhanced computer resources. There is also a reorganization of the contents and new sections. The latter include material on transfer maps, thermodynamics of beams, additional aspects of envelope matching, betatron resonances and dispersion with space charge, closed orbits, and beam cooling. The appendix has been completely reorganized, revised and updated and now includes short descriptions of the map code MaryLie, and the particle-in-cell code Warp.