A Multi Level Inverter Integrated With Conditioning Interface For Grid Tied Systems


Download A Multi Level Inverter Integrated With Conditioning Interface For Grid Tied Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Multi Level Inverter Integrated With Conditioning Interface For Grid Tied Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Multilevel Converters


Multilevel Converters

Author: Salman Ahmad

language: en

Publisher: John Wiley & Sons

Release Date: 2024-07-03


DOWNLOAD





Discover the deep insights into the operation, modulation, and control strategies of multilevel converters, alongside their recent applications in variable speed drives, renewable energy generation, and power systems. Multilevel converters have gained attention in recent years for medium/high voltage and high power industrial and residential applications. The main advantages of multilevel converters over two level converters include less voltage stress on power semiconductors, low dv/dt, low common voltage, reduced electromagnetic interference, and low total harmonics distortion, among others. Better output power quality is ensured by increasing the number of levels in the synthesized output voltage waveform. Several multilevel topologies have been reported in the literature, such as neutral point clamped (NPC), flying capacitor (FC), cascaded H-bridge (CHB), hybrid cascaded H-bridge, asymmetrical cascaded H-bridge, modular multilevel converters (MMC), active neutral point clamped converters (ANPC), and packed U-cell type converters and various reduced device counts and a reduced number of source-based topologies have been proposed in literature. The multilevel converter, although a proven and enabling technology, still presents numerous challenges in topologies, modulation, and control, as well as in need-based applications. Since multilevel converters offer a wide range of possibilities, research and development in the areas of multilevel converter topologies, modulation, and control in various applications are still growing. To further improve multilevel converter energy efficiency, reliability, power density, and cost, many research groups across the world are working to broaden the application areas of multilevel converters and make them more attractive and competitive compared to classic topologies. Multilevel Converters intends to provide deep insight about multilevel converter operation, modulation, and control strategies and various recent applications of multilevel converters such as in variable speed drives, renewable energy generation, and power systems.

A Multi Level Inverter Integrated with Conditioning Interface for Grid-tied Systems


A Multi Level Inverter Integrated with Conditioning Interface for Grid-tied Systems

Author: Zeeshan Shahid

language: en

Publisher:

Release Date: 2016


DOWNLOAD





This thesis presents the proposed design, working principle, simulation and experimental details of a transformer-less multilevel grid-tied inverter. Grid connectivity requires DC-to-AC inversion with efficient synchronization, reduced total harmonic distortion (THD), real-time control and monitoring. The generation of multi-level output can reduce harmonic with effective sinusoidal wave generation and increased efficiency; however, it requires more complex control and implementation. This research has applications in terms of integration of renewable energy sources with utility grids in stand-alone or industrial generation as well as in case of DG systems. This research proposes a six-level DC supply using novel switching technique with DC-DC converter, embedded with an element of adaptability choosing if Buck or Boost is required for addressing amplitude synchronization. Other issues with fly-back mitigation, low pass filter design for THD reduction and almost near to pure sine wave generation are addressed. The H-bridge transformer-less inverter is designed with four IGBTs (operated at 20kHz) synchronized pulse width modulation (PWM). Two additional fly-back IGBTs are introduced in H-bridge inverter to mitigate fly-back spike generation. For grid connectivity, a versatile technique of phase and frequency synchronization is proposed by using analog to digital converters (ADCs). The feedback and monitoring control scheme is proposed and tested for any abnormal occurrence on grid side. This enables continuous observation of the performance of inverters in terms of power sharing, synchronization and stability. Simulation results are validated experimentally; discussed and analyzed. The DC-DC supply under synchronized condition has a voltage variation range from 308V to 356V. In the proposed design, the IGBTs are reduced to active five. The maximum efficiency achieved is 99.3% (compared to 98.6% on the market) and the lowest is 98% under 1.8kW load. The use of six level generation (0V - 372V) has reduced THD to 2.4% following the EN-50160 and IEEE-1547 international standards.

Advances in Control Techniques for Smart Grid Applications


Advances in Control Techniques for Smart Grid Applications

Author: Sajal Kumar Das

language: en

Publisher: Springer Nature

Release Date: 2022-03-30


DOWNLOAD





To meet the increasing demand of electrical power, the use of renewable energy-based smart grid is attracting significant attention in recent years throughout the world. The high penetration of renewable power in the smart grids is growing its importance due to its non-finishing, reusable, reliable, sustainable, lower cost, and available characteristics. The renewable energy-based smart grid technology may mitigate the increasing energy demands effectively and efficiently without hampering the environment. But the uncertain nature of renewable sources largely affects the operation of the smart grid by un-stabling the voltage and frequency that may introduces power quality and reliability problems, which requires special control techniques. This book investigates the challenges in controlling renewable energy-based smart grids and proposes different control techniques to control the voltage and frequency effectively to improve the power quality and reliability of the power grids. This book is a valuable resource for readers interested in practical solutions in smart grids and renewable energy systems.