A Method Of Verifying The Accuracy Of Real Time Hardware In The Loop Traffic Simulation

Download A Method Of Verifying The Accuracy Of Real Time Hardware In The Loop Traffic Simulation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Method Of Verifying The Accuracy Of Real Time Hardware In The Loop Traffic Simulation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Predictive Cruise Control for Road Vehicles Using Road and Traffic Information

This book focuses on the design of a multi-criteria automated vehicle longitudinal control system as an enhancement of the adaptive cruise control system. It analyses the effects of various parameters on the average traffic speed and the traction force of the vehicles in mixed traffic from a macroscopic point of view, and also demonstrates why research and development in speed control and predictive cruise control is important. The book also summarises the main steps of the system’s robust control design, from the modelling to its synthesis, and discusses both the theoretical background and the practical computation method of the control invariant sets. The book presents the analysis and verification of the system both in a simulation environment and under real-world conditions. By including the systematic design of the predictive cruise control using road and traffic information, it shows how optimization criteria can lead to multiobjective solutions, and the advanced optimization and control design methods required. The book focuses on a particular method by which the unfavourable effect of the traffic flow consideration can be reduced. It also includes simulation examples in which the speed design is performed, while the analysis is carried out in simulation and visualization environments. This book is a valuable reference for researchers and control engineers working on traffic control, vehicle control and control theory. It is also of interest to students and academics as it provides an overview of the strong interaction between the traffic flow and an individual vehicle cruising from both a microscopic and a macroscopic point of view.
Methods and Concepts for Designing and Validating Smart Grid Systems

Energy efficiency and low-carbon technologies are key contributors to curtailing the emission of greenhouse gases that continue to cause global warming. The efforts to reduce greenhouse gas emissions also strongly affect electrical power systems. Renewable sources, storage systems, and flexible loads provide new system controls, but power system operators and utilities have to deal with their fluctuating nature, limited storage capabilities, and typically higher infrastructure complexity with a growing number of heterogeneous components. In addition to the technological change of new components, the liberalization of energy markets and new regulatory rules bring contextual change that necessitates the restructuring of the design and operation of future energy systems. Sophisticated component design methods, intelligent information and communication architectures, automation and control concepts, new and advanced markets, as well as proper standards are necessary in order to manage the higher complexity of such intelligent power systems that form smart grids. Due to the considerably higher complexity of such cyber-physical energy systems, constituting the power system, automation, protection, information and communication technology (ICT), and system services, it is expected that the design and validation of smart-grid configurations will play a major role in future technology and system developments. However, an integrated approach for the design and evaluation of smart-grid configurations incorporating these diverse constituent parts remains evasive. The currently available validation approaches focus mainly on component-oriented methods. In order to guarantee a sustainable, affordable, and secure supply of electricity through the transition to a future smart grid with considerably higher complexity and innovation, new design, validation, and testing methods appropriate for cyber-physical systems are required. Therefore, this book summarizes recent research results and developments related to the design and validation of smart grid systems.