A Low Temperature Co Fired Ceramic Ltcc Interposer Based Three Dimensional Stacked Wire Bondless Power Module

Download A Low Temperature Co Fired Ceramic Ltcc Interposer Based Three Dimensional Stacked Wire Bondless Power Module PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Low Temperature Co Fired Ceramic Ltcc Interposer Based Three Dimensional Stacked Wire Bondless Power Module book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Low Temperature Co-fired Ceramic (LTCC) Interposer Based Three-dimensional Stacked Wire Bondless Power Module

The objective of this dissertation research is to develop a low temperature co-fired ceramic (LTCC) interposer-based module-level 3-D wire bondless stacked power module. As part of the dissertation work, the 3-D wire bondless stack is designed, simulated, fabricated and characterized. The 3-D wire bondless stack is realized with two stand-alone power modules in a half-bridge configuration. Each stand-alone power module consists of two 1200 V 25 A silicon insulated-gate bipolar transistor (IGBT) devices in parallel and two 1200 V 20 A Schottky barrier diodes (SBD) in an antiparallel configuration. A novel interconnection scheme with conductive clamps and a spring loaded LTCC interposer is introduced to establish electrical connection between the stand-alone power modules to connect them in series to realize a half-bridge stack. Process development to fabricate the LTCC based 3-D stack is performed. In traditional power modules, wire bonds are used as a top side interconnections that introduce additional parasitic inductance in the current conduction path and prone to failure mechanism under high thermomechanical stresses. The loop inductance of the proposed 3-D half-bridge module exhibits 71% lower parasitic inductance compared to a wire bonded module. The 3-D stack exhibits better switching performance compared to the wire bonded counterpart. The measurement results for the 3-D stack shows 30% decrease in current overshoot at turn-on and 43% voltage overshoot at turn-off compared to the wire bonded module. Through measurements, it has been shown that the conducted noise reduces by 20 dB in the frequency range 20-30 MHz for the 3-D stack compared to the wire bonded counterpart. A simulation methodology using co-simulation techniques using ANSYS EM software tools is developed to predict EMI of a power module. Hardware verification of the proposed simulation methodology is performed to validate the co-simulation technique. The correlation coefficient between the measurement and simulation is found to be 0.73. It is shown that 53% of the variability in the simulation can be explained by the simulated result. Moreover, the simulated and measured amplitudes of the EMI spectrum closely match with each other with some variations due to round-off errors due to the FFT conversion.
High Temperature LTCC Based SiC Double-sided Cooling Power Electronic Module

This objective of this dissertation research is to investigate a module packaging technology for high temperature double-sided cooling power electronic module application. A high-temperature wire-bondless low-temperature co-fired ceramic (LTCC) based double-sided cooling power electronic module was designed, simulated and fabricated. In this module, the conventional copper base plate is removed to reduce the thermal resistance between the device junctions to the heat sink and to improve the reliability of the module by eliminating the large area solder joint between the power substrate and the copper base plate. A low-temperature co-fired ceramic (LTCC) substrate with cavities and vias is used as the dielectric material between the top and bottom substrates and it also serves as the die frame. A nano silver attach material is used to enable the high-temperature operation. Thermal and thermo-mechanical simulations were performed to evaluate the advantages of the LTCC double-sided power module structure and compared to other reported module structures and its wire-bonded counterpart. The junction-to-case thermal resistance for the power module without a copper base plate is 0.029oC/W, which is smaller than that of the power module with a copper base plate. Thermo-mechanical simulation reveals that double-sided cooling power modules generate higher thermal stresses when compared to that of the single-sided cooling power modules which indicates the trade-off between the junction temperature and the thermo-mechanical stress. Electrical and thermal characterizations were performed to test the functionality of the fabricated module using a 1200V rated voltage blocking capability. The forward and reverse characteristics of the SiC power MOSFET and SiC diode module were tested to 200°C and they demonstrated the functionality of the power module. The junction-to-ambient thermal resistance of the proposed module is shown to reduce by 11% compared to the wire-bonded equivalent which shows an improvement of the thermal performance of the double-sided cooling structure. Finally, the reliability of the several power substrates was evaluated based on the thermal stress and fatigue life simulation of the bonding layer to determine the mechanical weakest spots of the power module. Thermal cycling experiments were also conducted to validate the simulation results.
Multilayered Low Temperature Cofired Ceramics (LTCC) Technology

Author: Yoshihiko Imanaka
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-05-28
The only book to concentrate solely on low temperature cofired ceramics, an attractive technology for electronic components and substrates that are compact, light, and offer high-speed and functionality for portable electronic devices.