A Low Power Ultra Wideband Transceiver And Sensor Interface Architecture For Wireless Sensor Networks


Download A Low Power Ultra Wideband Transceiver And Sensor Interface Architecture For Wireless Sensor Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Low Power Ultra Wideband Transceiver And Sensor Interface Architecture For Wireless Sensor Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

A Low Power Ultra Wideband Transceiver and Sensor Interface Architecture for Wireless Sensor Networks


A Low Power Ultra Wideband Transceiver and Sensor Interface Architecture for Wireless Sensor Networks

Author: Karim Allidina

language: en

Publisher:

Release Date: 2015


DOWNLOAD





"This thesis focuses on the design of a low power ultra wideband (UWB) transceiver and a low power sensor interface architecture, both for use in wireless sensor networks.Pulse-based UWB radios communicate using short broadband pulses, which allow the transceiver to be duty cycled such that power is only consumed when a pulse is being transmitted or received. This enables increased power savings when compared to traditional narrowband transceivers. The receiver designed here is based on peak detection, and it is shown that this type of non-coherent receiver can perform better than a more complex energy detection receiver in interference dominated environments (such as urban areas) in both an additive white Gaussian noise channel, and a multipath environment.The fabricated UWB receiver uses a clock and data recovery system to synchronize the local receiver clock to the transmitted data to reduce synchronization time and enable more efficient communications for sensor networks, which typically have a small data payload. By moving the synchronization to the analog domain, the size and power consumption of the digital backend is reduced significantly when compared to other receiver architectures. The clock and data recovery synchronization scheme also provides real time tracking of any variations in the transmitted data rate and the receiver clock, which minimizes the need for a high precision crystal reference in either system. The fabricated UWB transmitter is implemented by exciting a pulse shaping filter with a broadband pulse, and the resulting signal conforms to the FCC spectral mask including the GPS stopband. The demonstrated transceiver system achieves a sensitivity of -66.5 dBm with a power consumption of ~400 [mu]W at a 1 Mbps data rate, making it suitable for wireless sensor networks and other low power, low data rate systems.An architecture for an energy efficient sensor interface for frequency domain sensors is also presented. The proposed system produces a digital output with inherent temperature compensation without the need for a high accuracy temperature sensor, a heater, or a temperature insensitive clock. This architecture is targeted towards systems where the emphasis is placed on battery longevity as opposed to high resolution sensing, such as in wireless sensor nodes." --

Ultra-Low Power Wireless Technologies for Sensor Networks


Ultra-Low Power Wireless Technologies for Sensor Networks

Author: Brian Otis

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-02-24


DOWNLOAD





transconductance e?ciency of all critical devices in order to reduce the n- essary bias current. However, reducing the current density also results in a severely decreased device f . An optimization of the current density is re- T quired to provide the correct balance between transconductance e?ciency and bandwidth. Plots such as Figure 2. 1 are useful tools for designers when choosing appropriate transistor bias points. Technology scaling allows greatly increased f realization for a given IC. Thus, weak inversion biasing for RF T design will become increasingly useful in future technology nodes. Throughout this work, the IC of critical transistors will be discussed. Most of the RF devices are biased in moderate to weak inversion to achieve enhanced transconductance e?ciency and reduced bias current. 2. 2 MEMS Background The relatively new ?eld of Radio Frequency Microelectro Mechanical Systems (RF MEMS) provides unique opportunities for RF transceiver designers. This section provides background on RF MEMS and provides insight into the - portunities presented by these new technologies. The ?eld of RF MEMS - cludes the design and utilization of RF ?lters, resonators, switches, and other passive mechanical structures constructed using bulk processed integrated c- cuit fabrication techniques. To date, these devices have been commercially used as discrete board-mounted components, primarily used to enhance the miniaturization of mobile phones. However, RF MEMS components have the potential to be batch fabricated using existing integrated circuit fabrication techniques.

Novel Applications of the UWB Technologies


Novel Applications of the UWB Technologies

Author: Boris Lembrikov

language: en

Publisher: BoD – Books on Demand

Release Date: 2011-08-01


DOWNLOAD





Ultra wideband (UWB) communication systems are characterized by high data rates, low cost, multipath immunity, and low power transmission. In 2002, the Federal Communication Commission (FCC) legalized low power UWB emission between 3.1 GHz and 10.6 GHz for indoor communication devices stimulating rapid development of UWB technologies and applications. The proposed book Novel Applications of the UWB Technologies consists of 5 parts and 20 chapters concerning the general problems of UWB communication systems, and novel UWB applications in personal area networks (PANs), medicine, radars and localization systems. The book will be interesting for engineers and researchers occupied in the field of UWB technology.