A Friendly Introduction To Differential Equations

Download A Friendly Introduction To Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Friendly Introduction To Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Friendly Introduction to Differential Equations

Author: Mohammed K A Kaabar
language: en
Publisher: CreateSpace Independent Publishing Platform
Release Date: 2015-01-05
In this book, there are five chapters: The Laplace Transform, Systems of Homogenous Linear Differential Equations (HLDE), Methods of First and Higher Orders Differential Equations, Extended Methods of First and Higher Orders Differential Equations, and Applications of Differential Equations. In addition, there are exercises at the end of each chapter above to let students practice additional sets of problems other than examples, and they can also check their solutions to some of these exercises by looking at "Answers to Odd-Numbered Exercises" section at the end of this book. This book is a very useful for college students who studied Calculus II, and other students who want to review some concepts of differential equations before studying courses such as partial differential equations, applied mathematics, and electric circuits II.
An Introduction to Differential Equations and Their Applications

Author: Stanley J. Farlow
language: en
Publisher: Courier Corporation
Release Date: 2006-03-11
This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.
Differential Equations: Theory and Applications

Author: David Betounes
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
This book was written as a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as time-honored and important applications of this theory. His torically, these were the applications that spurred the development of the mathematical theory and in hindsight they are still the best applications for illustrating the concepts, ideas, and impact of the theory. While the book is intended for traditional graduate students in mathe matics, the material is organized so that the book can also be used in a wider setting within today's modern university and society (see "Ways to Use the Book" below). In particular, it is hoped that interdisciplinary programs with courses that combine students in mathematics, physics, engineering, and other sciences can benefit from using this text. Working professionals in any of these fields should be able to profit too by study of this text. An important, but optional component of the book (based on the in structor's or reader's preferences) is its computer material. The book is one of the few graduate differential equations texts that use the computer to enhance the concepts and theory normally taught to first- and second-year graduate students in mathematics. I have made every attempt to blend to gether the traditional theoretical material on differential equations and the new, exciting techniques afforded by computer algebra systems (CAS), like Maple, Mathematica, or Matlab.