A First Course In Noncommutative Rings


Download A First Course In Noncommutative Rings PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A First Course In Noncommutative Rings book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

A First Course in Noncommutative Rings


A First Course in Noncommutative Rings

Author: Tsit-Yuen Lam

language: en

Publisher: Springer Science & Business Media

Release Date: 2001-06-21


DOWNLOAD





Aimed at the novice rather than the connoisseur and stressing the role of examples and motivation, this text is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.

A First Course in Noncommutative Rings


A First Course in Noncommutative Rings

Author: T.Y. Lam

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.

A First Course in Noncommutative Rings


A First Course in Noncommutative Rings

Author: Tsi-Yuen Lam

language: en

Publisher: Springer

Release Date: 2011-04-22


DOWNLOAD





Aimed at the novice rather than the connoisseur and stressing the role of examples and motivation, this text is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.