A First Course In Graph Theory And Combinatorics


Download A First Course In Graph Theory And Combinatorics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A First Course In Graph Theory And Combinatorics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

A First Course in Graph Theory and Combinatorics


A First Course in Graph Theory and Combinatorics

Author: Sebastian M. Cioabă

language: en

Publisher: Springer

Release Date: 2009-05-15


DOWNLOAD





The concept of a graph is fundamental in mathematics since it conveniently encodes diverse relations and facilitates combinatorial analysis of many complicated counting problems. In this book, the authors have traced the origins of graph theory from its humble beginnings of recreational mathematics to its modern setting for modeling communication networks as is evidenced by the World Wide Web graph used by many Internet search engines. This book is an introduction to graph theory and combinatorial analysis. It is based on courses given by the second author at Queen's University at Kingston, Ontario, Canada between 2002 and 2008. The courses were aimed at students in their final year of their undergraduate program.

A First Course in Graph Theory and Combinatorics


A First Course in Graph Theory and Combinatorics

Author: Sebastian M. Cioabă

language: en

Publisher:

Release Date: 2022


DOWNLOAD





This book discusses the origin of graph theory from its humble beginnings in recreational mathematics to its modern setting or modeling communication networks, as is evidenced by the World Wide Web graph used by many Internet search engines. The second edition of the book includes recent developments in the theory of signed adjacency matrices involving the proof of sensitivity conjecture and the theory of Ramanujan graphs. In addition, the book discusses topics such as Pick's theorem on areas of lattice polygons and Graham-Pollak's work on addressing of graphs. The concept of graph is fundamental in mathematics and engineering, as it conveniently encodes diverse relations and facilitates combinatorial analysis of many theoretical and practical problems. The text is ideal for a one-semester course at the advanced undergraduate level or beginning graduate level.

Combinatorics and Graph Theory


Combinatorics and Graph Theory

Author: John Harris

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-04-03


DOWNLOAD





There are certain rules that one must abide by in order to create a successful sequel. — Randy Meeks, from the trailer to Scream 2 While we may not follow the precise rules that Mr. Meeks had in mind for s- cessful sequels, we have made a number of changes to the text in this second edition. In the new edition, we continue to introduce new topics with concrete - amples, we provide complete proofs of almost every result, and we preserve the book’sfriendlystyle andlivelypresentation,interspersingthetextwith occasional jokes and quotations. The rst two chapters, on graph theory and combinatorics, remain largely independent, and may be covered in either order. Chapter 3, on in nite combinatorics and graphs, may also be studied independently, although many readers will want to investigate trees, matchings, and Ramsey theory for nite sets before exploring these topics for in nite sets in the third chapter. Like the rst edition, this text is aimed at upper-division undergraduate students in mathematics, though others will nd much of interest as well. It assumes only familiarity with basic proof techniques, and some experience with matrices and in nite series. The second edition offersmany additionaltopics for use in the classroom or for independentstudy. Chapter 1 includesa new sectioncoveringdistance andrelated notions in graphs, following an expanded introductory section. This new section also introduces the adjacency matrix of a graph, and describes its connection to important features of the graph.