A First Course In Fractional Sobolev Spaces

Download A First Course In Fractional Sobolev Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A First Course In Fractional Sobolev Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A First Course in Fractional Sobolev Spaces

Author: Giovanni Leoni
language: en
Publisher: American Mathematical Society
Release Date: 2023-03-17
This book provides a gentle introduction to fractional Sobolev spaces which play a central role in the calculus of variations, partial differential equations, and harmonic analysis. The first part deals with fractional Sobolev spaces of one variable. It covers the definition, standard properties, extensions, embeddings, Hardy inequalities, and interpolation inequalities. The second part deals with fractional Sobolev spaces of several variables. The author studies completeness, density, homogeneous fractional Sobolev spaces, embeddings, necessary and sufficient conditions for extensions, Gagliardo-Nirenberg type interpolation inequalities, and trace theory. The third part explores some applications: interior regularity for the Poisson problem with the right-hand side in a fractional Sobolev space and some basic properties of the fractional Laplacian. The first part of the book is accessible to advanced undergraduates with a strong background in integration theory; the second part, to graduate students having familiarity with measure and integration and some functional analysis. Basic knowledge of Sobolev spaces would help, but is not necessary. The book can also serve as a reference for mathematicians working in the calculus of variations and partial differential equations as well as for researchers in other disciplines with a solid mathematics background. It contains several exercises and is self-contained.
A First Course in Fractional Sobolev Spaces

Author: Giovanni Leoni
language: en
Publisher: American Mathematical Society
Release Date: 2023-04-12
This book provides a gentle introduction to fractional Sobolev spaces which play a central role in the calculus of variations, partial differential equations, and harmonic analysis. The first part deals with fractional Sobolev spaces of one variable. It covers the definition, standard properties, extensions, embeddings, Hardy inequalities, and interpolation inequalities. The second part deals with fractional Sobolev spaces of several variables. The author studies completeness, density, homogeneous fractional Sobolev spaces, embeddings, necessary and sufficient conditions for extensions, Gagliardo-Nirenberg type interpolation inequalities, and trace theory. The third part explores some applications: interior regularity for the Poisson problem with the right-hand side in a fractional Sobolev space and some basic properties of the fractional Laplacian. The first part of the book is accessible to advanced undergraduates with a strong background in integration theory; the second part, to graduate students having familiarity with measure and integration and some functional analysis. Basic knowledge of Sobolev spaces would help, but is not necessary. The book can also serve as a reference for mathematicians working in the calculus of variations and partial differential equations as well as for researchers in other disciplines with a solid mathematics background. It contains several exercises and is self-contained.
A First Course in Sobolev Spaces

Author: Giovanni Leoni
language: en
Publisher: American Mathematical Society
Release Date: 2024-04-17
This book is about differentiation of functions. It is divided into two parts, which can be used as different textbooks, one for an advanced undergraduate course in functions of one variable and one for a graduate course on Sobolev functions. The first part develops the theory of monotone, absolutely continuous, and bounded variation functions of one variable and their relationship with Lebesgue–Stieltjes measures and Sobolev functions. It also studies decreasing rearrangement and curves. The second edition includes a chapter on functions mapping time into Banach spaces. The second part of the book studies functions of several variables. It begins with an overview of classical results such as Rademacher's and Stepanoff's differentiability theorems, Whitney's extension theorem, Brouwer's fixed point theorem, and the divergence theorem for Lipschitz domains. It then moves to distributions, Fourier transforms and tempered distributions. The remaining chapters are a treatise on Sobolev functions. The second edition focuses more on higher order derivatives and it includes the interpolation theorems of Gagliardo and Nirenberg. It studies embedding theorems, extension domains, chain rule, superposition, Poincaré's inequalities and traces. A major change compared to the first edition is the chapter on Besov spaces, which are now treated using interpolation theory.