A Differential Evolution Approach To Feature Selection In Genomic Prediction

Download A Differential Evolution Approach To Feature Selection In Genomic Prediction PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Differential Evolution Approach To Feature Selection In Genomic Prediction book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Differential Evolution Approach to Feature Selection in Genomic Prediction

The use of genetic markers has become widespread for prediction of genetic merit in agricultural applications and is a beginning to show promise for estimating propensity to disease in human medicine. This process is known as genomic prediction and attempts to model the mapping between an organism's genotype and phenotype. In practice, this process presents a challenging problem. Sequencing and recording phenotypic traits are often expensive and time consuming. This leads to datasets often having many more features than samples. Common models for genomic prediction often fall victim to overfitting due to the curse of dimensionality. In this domain, only a fraction of the markers that are present significantly affect a particular trait. Models that fit to non-informative markers are in effect fitting to statistical noise, leading to a decrease in predictive performance. Therefore, feature selection is desirable to remove markers that do not appear to have a significant effect on the trait being predicted. The method presented here uses differential evolution based search for feature selection. This study will characterize differential evolution's efficacy in feature selection for genomic prediction and present several extensions to the base search algorithm in an attempt to apply domain knowledge to guide the search toward better solutions.
Evolution in Action: Past, Present and Future

This edited research monograph brings together contributions from computer scientists, biologists, and engineers who are engaged with the study of evolution and how it may be applied to solve real-world problems. It also serves as a Festschrift dedicated to Erik D. Goodman, the founding director of the BEACON Center for the Study of Evolution in Action, a pioneering NSF Science and Technology Center headquartered at Michigan State University. The contributing authors are leading experts associated with the center, and they serve in top research and industrial establishments across the US and worldwide. Part I summarizes the history of the BEACON Center, with refreshingly personal chapters that describe Erik's working and leadership style, and others that discuss the development and successes of the center in the context of research funding, projects, and careers. The chapters in Part II deal with the evolution of genomes and evolvability. The contributions in Part III discuss the evolution of behavior and intelligence. Those in Part IV concentrate on the evolution of communities and collective dynamics. The chapters in Part V discuss selected evolutionary computing applications in domains such as arts and science, automated program repair, cybersecurity, mechatronics, and genomic prediction. Part VI deals with evolution in the classroom, using creativity in research, and responsible conduct in research training. The book concludes with a special chapter from Erik Goodman, a short biography that concentrates on his personal positive influences and experiences throughout his long career in academia and industry.
Genomic Intelligence

The field of metagenomics has revolutionized our comprehension of microbial diversity and function across various habitats, from the human body to terrestrial and aquatic environments. Simultaneously, advancements in AI have empowered researchers to analyze vast troves of genomic data with unprecedented speed and precision, facilitating new insights into the complex interplay between microorganisms and their surroundings. The subject matter in this book provides an overview of metagenomics and discusses the combination of metagenomics and AI and its significant consequences for advancements in science. The chapters examine the approaches, difficulties, and revolutionary uses of AI in metagenomics and provide insight into the convergence of genomics, metagenomics, and AI’s potential to revolutionize diverse fields from healthcare to environmental. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan)