A Course On Integration Theory

Download A Course On Integration Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Course On Integration Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Course on Integration Theory

This textbook provides a detailed treatment of abstract integration theory, construction of the Lebesgue measure via the Riesz-Markov Theorem and also via the Carathéodory Theorem. It also includes some elementary properties of Hausdorff measures as well as the basic properties of spaces of integrable functions and standard theorems on integrals depending on a parameter. Integration on a product space, change of variables formulas as well as the construction and study of classical Cantor sets are treated in detail. Classical convolution inequalities, such as Young's inequality and Hardy-Littlewood-Sobolev inequality are proven. The Radon-Nikodym theorem, notions of harmonic analysis, classical inequalities and interpolation theorems, including Marcinkiewicz's theorem, the definition of Lebesgue points and Lebesgue differentiation theorem are further topics included. A detailed appendix provides the reader with various elements of elementary mathematics, such as a discussion around the calculation of antiderivatives or the Gamma function. The appendix also provides more advanced material such as some basic properties of cardinals and ordinals which are useful in the study of measurability.
A Modern Theory of Integration

Author: Robert G. Bartle
language: en
Publisher: American Mathematical Society
Release Date: 2024-10-25
The theory of integration is one of the twin pillars on which analysis is built. The first version of integration that students see is the Riemann integral. Later, graduate students learn that the Lebesgue integral is ?better? because it removes some restrictions on the integrands and the domains over which we integrate. However, there are still drawbacks to Lebesgue integration, for instance, dealing with the Fundamental Theorem of Calculus, or with ?improper? integrals. This book is an introduction to a relatively new theory of the integral (called the ?generalized Riemann integral? or the ?Henstock-Kurzweil integral?) that corrects the defects in the classical Riemann theory and both simplifies and extends the Lebesgue theory of integration. Although this integral includes that of Lebesgue, its definition is very close to the Riemann integral that is familiar to students from calculus. One virtue of the new approach is that no measure theory and virtually no topology is required. Indeed, the book includes a study of measure theory as an application of the integral. Part 1 fully develops the theory of the integral of functions defined on a compact interval. This restriction on the domain is not necessary, but it is the case of most interest and does not exhibit some of the technical problems that can impede the reader's understanding. Part 2 shows how this theory extends to functions defined on the whole real line. The theory of Lebesgue measure from the integral is then developed, and the author makes a connection with some of the traditional approaches to the Lebesgue integral. Thus, readers are given full exposure to the main classical results. The text is suitable for a first-year graduate course, although much of it can be readily mastered by advanced undergraduate students. Included are many examples and a very rich collection of exercises. There are partial solutions to approximately one-third of the exercises. A complete solutions manual is available separately.