A Course In The Calculus Of Variations


Download A Course In The Calculus Of Variations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Course In The Calculus Of Variations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

A First Course in the Calculus of Variations


A First Course in the Calculus of Variations

Author: Mark Kot

language: en

Publisher: American Mathematical Society

Release Date: 2014-10-06


DOWNLOAD





This book is intended for a first course in the calculus of variations, at the senior or beginning graduate level. The reader will learn methods for finding functions that maximize or minimize integrals. The text lays out important necessary and sufficient conditions for extrema in historical order, and it illustrates these conditions with numerous worked-out examples from mechanics, optics, geometry, and other fields. The exposition starts with simple integrals containing a single independent variable, a single dependent variable, and a single derivative, subject to weak variations, but steadily moves on to more advanced topics, including multivariate problems, constrained extrema, homogeneous problems, problems with variable endpoints, broken extremals, strong variations, and sufficiency conditions. Numerous line drawings clarify the mathematics. Each chapter ends with recommended readings that introduce the student to the relevant scientific literature and with exercises that consolidate understanding.

A Course in the Calculus of Variations


A Course in the Calculus of Variations

Author: Filippo Santambrogio

language: en

Publisher: Springer Nature

Release Date: 2023-12-17


DOWNLOAD





This book provides an introduction to the broad topic of the calculus of variations. It addresses the most natural questions on variational problems and the mathematical complexities they present. Beginning with the scientific modeling that motivates the subject, the book then tackles mathematical questions such as the existence and uniqueness of solutions, their characterization in terms of partial differential equations, and their regularity. It includes both classical and recent results on one-dimensional variational problems, as well as the adaptation to the multi-dimensional case. Here, convexity plays an important role in establishing semi-continuity results and connections with techniques from optimization, and convex duality is even used to produce regularity results. This is then followed by the more classical Hölder regularity theory for elliptic PDEs and some geometric variational problems on sets, including the isoperimetric inequality andthe Steiner tree problem. The book concludes with a chapter on the limits of sequences of variational problems, expressed in terms of Γ-convergence. While primarily designed for master's-level and advanced courses, this textbook, based on its author's instructional experience, also offers original insights that may be of interest to PhD students and researchers. A foundational understanding of measure theory and functional analysis is required, but all the essential concepts are reiterated throughout the book using special memo-boxes.

Mathematical Methods of Classical Mechanics


Mathematical Methods of Classical Mechanics

Author: V.I. Arnol'd

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-04-09


DOWNLOAD





In this text, the author constructs the mathematical apparatus of classical mechanics from the beginning, examining all the basic problems in dynamics, including the theory of oscillations, the theory of rigid body motion, and the Hamiltonian formalism. This modern approch, based on the theory of the geometry of manifolds, distinguishes iteself from the traditional approach of standard textbooks. Geometrical considerations are emphasized throughout and include phase spaces and flows, vector fields, and Lie groups. The work includes a detailed discussion of qualitative methods of the theory of dynamical systems and of asymptotic methods like perturbation techniques, averaging, and adiabatic invariance.