A Concrete Introduction To Real Analysis


Download A Concrete Introduction To Real Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Concrete Introduction To Real Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

A Concrete Introduction to Real Analysis


A Concrete Introduction to Real Analysis

Author: Robert Carlson

language: en

Publisher: CRC Press

Release Date: 2006-05-30


DOWNLOAD





Most volumes in analysis plunge students into a challenging new mathematical environment, replete with axioms, powerful abstractions, and an overriding emphasis on formal proofs. This can lead even students with a solid mathematical aptitude to often feel bewildered and discouraged by the theoretical treatment. Avoiding unnecessary abstractions to provide an accessible presentation of the material, A Concrete Introduction to Real Analysis supplies the crucial transition from a calculations-focused treatment of mathematics to a proof-centered approach. Drawing from the history of mathematics and practical applications, this volume uses problems emerging from calculus to introduce themes of estimation, approximation, and convergence. The book covers discrete calculus, selected area computations, Taylor's theorem, infinite sequences and series, limits, continuity and differentiability of functions, the Riemann integral, and much more. It contains a large collection of examples and exercises, ranging from simple problems that allow students to check their understanding of the concepts to challenging problems that develop new material. Providing a solid foundation in analysis, A Concrete Introduction to Real Analysis demonstrates that the mathematical treatments described in the text will be valuable both for students planning to study more analysis and for those who are less inclined to take another analysis class.

A Concrete Introduction to Real Analysis


A Concrete Introduction to Real Analysis

Author: Robert Carlson

language: en

Publisher: CRC Press

Release Date: 2017-11-28


DOWNLOAD





A Concrete Introduction to Analysis, Second Edition offers a major reorganization of the previous edition with the goal of making it a much more comprehensive and accessible for students. The standard, austere approach to teaching modern mathematics with its emphasis on formal proofs can be challenging and discouraging for many students. To remedy this situation, the new edition is more rewarding and inviting. Students benefit from the text by gaining a solid foundational knowledge of analysis, which they can use in their fields of study and chosen professions. The new edition capitalizes on the trend to combine topics from a traditional transition to proofs course with a first course on analysis. Like the first edition, the text is appropriate for a one- or two-semester introductory analysis or real analysis course. The choice of topics and level of coverage is suitable for mathematics majors, future teachers, and students studying engineering or other fields requiring a solid, working knowledge of undergraduate mathematics. Key highlights: Offers integration of transition topics to assist with the necessary background for analysis Can be used for either a one- or a two-semester course Explores how ideas of analysis appear in a broader context Provides as major reorganization of the first edition Includes solutions at the end of the book

Real Analysis for the Undergraduate


Real Analysis for the Undergraduate

Author: Matthew A. Pons

language: en

Publisher: Springer

Release Date: 2016-08-27


DOWNLOAD





This undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author’s engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.