A Computational Framework For Segmentation And Grouping

Download A Computational Framework For Segmentation And Grouping PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Computational Framework For Segmentation And Grouping book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Computational Framework for Segmentation and Grouping

This book represents a summary of the research we have been conducting since the early 1990s, and describes a conceptual framework which addresses some current shortcomings, and proposes a unified approach for a broad class of problems. While the framework is defined, our research continues, and some of the elements presented here will no doubt evolve in the coming years.It is organized in eight chapters. In the Introduction chapter, we present the definition of the problems, and give an overview of the proposed approach and its implementation. In particular, we illustrate the limitations of the 2.5D sketch, and motivate the use of a representation in terms of layers instead.In chapter 2, we review some of the relevant research in the literature. The discussion focuses on general computational approaches for early vision, and individual methods are only cited as references. Chapter 3 is the fundamental chapter, as it presents the elements of our salient feature inference engine, and their interaction. It introduced tensors as a way to represent information, tensor fields as a way to encode both constraints and results, and tensor voting as the communication scheme. Chapter 4 describes the feature extraction steps, given the computations performed by the engine described earlier. In chapter 5, we apply the generic framework to the inference of regions, curves, and junctions in 2-D. The input may take the form of 2-D points, with or without orientation. We illustrate the approach on a number of examples, both basic and advanced. In chapter 6, we apply the framework to the inference of surfaces, curves and junctions in 3-D. Here, the input consists of a set of 3-D points, with or without as associated normal or tangent direction. We show a number of illustrative examples, and also point to some applications of the approach. In chapter 7, we use our framework to tackle 3 early vision problems, shape from shading, stereo matching, and optical flow computation. In chapter 8, we conclude this book with a few remarks, and discuss future research directions.We include 3 appendices, one on Tensor Calculus, one dealing with proofs and details of the Feature Extraction process, and one dealing with the companion software packages.
ECAI 2006

In the summer of 1956, John McCarthy organized the famous Dartmouth Conference which is now commonly viewed as the founding event for the field of Artificial Intelligence. During the last 50 years, AI has seen a tremendous development and is now a well-established scientific discipline all over the world. Also in Europe AI is in excellent shape, as witnessed by the large number of high quality papers in this publication. In comparison with ECAI 2004, there’s a strong increase in the relative number of submissions from Distributed AI / Agents and Cognitive Modelling. Knowledge Representation & Reasoning is traditionally strong in Europe and remains the biggest area of ECAI-06. One reason the figures for Case-Based Reasoning are rather low is that much of the high quality work in this area has found its way into prestigious applications and is thus represented under the heading of PAIS.