A Class Of Fusion Rules Based On The Belief Redistribution To Subsets Or Complements

Download A Class Of Fusion Rules Based On The Belief Redistribution To Subsets Or Complements PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Class Of Fusion Rules Based On The Belief Redistribution To Subsets Or Complements book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A class of fusion rules based on the belief redistribution to subsets or complements

In this chapter we present a class of fusion rules based on the redistribution of the conflicting or even non-conflicting masses to the subsets or to the complements of the elements involved in the conflict proportionally with respect to their masses or/and cardinals. At the end, these rules are presented in a more general theoretical way including explicitly the reliability of each source of evidence. Some examples are also provided.
Advances and Applications of DSmT for Information Fusion, Vol. 3

This volume has about 760 pages, split into 25 chapters, from 41 contributors. First part of this book presents advances of Dezert-Smarandache Theory (DSmT) which is becoming one of the most comprehensive and flexible fusion theory based on belief functions. It can work in all fusion spaces: power set, hyper-power set, and super-power set, and has various fusion and conditioning rules that can be applied depending on each application. Some new generalized rules are introduced in this volume with codes for implementing some of them. For the qualitative fusion, the DSm Field and Linear Algebra of Refined Labels (FLARL) is proposed which can convert any numerical fusion rule to a qualitative fusion rule. When one needs to work on a refined frame of discernment, the refinement is done using Smarandache¿s algebraic codification. New interpretations and implementations of the fusion rules based on sampling techniques and referee functions are proposed, including the probabilistic proportional conflict redistribution rule. A new probabilistic transformation of mass of belief is also presented which outperforms the classical pignistic transformation in term of probabilistic information content. The second part of the book presents applications of DSmT in target tracking, in satellite image fusion, in snow-avalanche risk assessment, in multi-biometric match score fusion, in assessment of an attribute information retrieved based on the sensor data or human originated information, in sensor management, in automatic goal allocation for a planetary rover, in computer-aided medical diagnosis, in multiple camera fusion for tracking objects on ground plane, in object identification, in fusion of Electronic Support Measures allegiance report, in map regenerating forest stands, etc.
An introduction to DSmT

The management and combination of uncertain, imprecise, fuzzy and even paradoxical or highly conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning.