A Brief Course In The Theory Of Functions Of A Real Variable

Download A Brief Course In The Theory Of Functions Of A Real Variable PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Brief Course In The Theory Of Functions Of A Real Variable book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Theory of Functions of a Real Variable

Author: Shlomo Sternberg
language: en
Publisher: Orange Grove Texts Plus
Release Date: 2009-09-24
This text is for a beginning graduate course in real variables and functional analysis. It assumes that the student has seen the basics of real variable theory and point set topology. Contents: 1) The topology of metric spaces. 2) Hilbert Spaces and Compact operators. 3) The Fourier Transform. 4) Measure theory. 5) The Lebesgue integral. 6) The Daniell integral. 7) Wiener measure, Brownian motion and white noise. 8) Haar measure. 9) Banach algebras and the spectral theorem. 10) The spectral theorem. 11) Stone's theorem. 12) More about the spectral theorem. 13) Scattering theory.
Basic Analysis I

Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists. This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduate mathematics students, or for those in other disciplines requiring a solid grounding in abstraction Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions