3d Densely Connected Convolutional Network For The Recognition Of Human Shopping Actions

Download 3d Densely Connected Convolutional Network For The Recognition Of Human Shopping Actions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get 3d Densely Connected Convolutional Network For The Recognition Of Human Shopping Actions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
3D Densely Connected Convolutional Network for the Recognition of Human Shopping Actions

In recent years, deep convolutional neural networks (CNNs) have shown remarkable results in the image domain. However, most of the neural networks in action recognition do not have very deep layer compared with the CNN in the image domain. This thesis presents a 3D Densely Connected Convolutional Network (3D-DenseNet) for action recognition that can have more than 100 layers without exhibiting performance degradation or overfitting. Our network expands Densely Connected Convolutional Networks (DenseNet) [32] to 3D-DenseNet by adding the temporal dimension to all internal convolution and pooling layers. The internal layers of our model are connected with each other in a feed-forward fashion. In each layer, the feature-maps of all preceding layers are concatenated along the last dimension and are used as inputs to all subsequent layers. We propose two different versions of 3D-DenseNets: general 3D-DenseNet and lite 3D-DenseNet. While general 3D-DenseNet has the same architecture as DenseNet, lite 3D-DenseNet adds a 3D pooling layer right after the first 3D convolution layer of general 3D-DenseNet to reduce the number of training parameters at the beginning so that we can reach a deeper network. We test on two action datasets: the MERL shopping dataset [69] and the KTH dataset [63]. Our experiment results demonstrate that our method performs better than the state-of-the-art action recognition method on the MERL shopping dataset and achieves a competitive result on the KTH dataset.
Cognitive Computing in Human Cognition

Author: Pradeep Kumar Mallick
language: en
Publisher: Springer Nature
Release Date: 2020-06-18
This edited book designs the Cognitive Computing in Human Cognition to analyze to improve the efficiency of decision making by cognitive intelligence. The book is also intended to attract the audience who work in brain computing, deep learning, transportation, and solar cell energy. Due to this in the recent era, smart methods with human touch called as human cognition is adopted by many researchers in the field of information technology with the Cognitive Computing.