3 D Object Recognition Using Generalized Features

Download 3 D Object Recognition Using Generalized Features PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get 3 D Object Recognition Using Generalized Features book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Three-Dimensional Object Recognition from Range Images

Author: Minsoo Suk
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Computer Science Workbench is a monograph series which will provide you with an in-depth working knowledge of current developments in computer technology. Every volume in this series will deal with a topic of importance in computer science and elaborate on how you yourself can build systems related to the main theme. You will be able to develop a variety of systems, including computer software tools, computer graphics, computer animation, database management systems, and computer-aided design and manufacturing systems. Computer Science Workbench represents an important new contribution in the field of practical computer technology. T08iyasu L. Kunii PREFACE The primary aim of this book is to present a coherent and self-contained de scription of recent advances in three-dimensional object recognition from range images. Three-dimensional object recognition concerns recognition and localiza tion of objects of interest in a scene from input images. This problem is one of both theoretical and practical importance. On the theoretical side, it is an ideal vehicle for the study of the general area of computer vision since it deals with several important issues encountered in computer vision-for example, issues such as feature extraction, acquisition, representation and proper use of knowl edge, employment of efficient control strategies, coupling numerical and symbolic computations, and parallel implementation of algorithms. On the practical side, it has a wide range of applications in areas such as robot vision, autonomous navigation, automated inspection of industrial parts, and automated assembly.
Representations and Techniques for 3D Object Recognition and Scene Interpretation

One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions